|
import spaces |
|
import json |
|
import gradio as gr |
|
import os |
|
import re |
|
from pathlib import Path |
|
from PIL import Image |
|
import shutil |
|
import requests |
|
from requests.adapters import HTTPAdapter |
|
from urllib3.util import Retry |
|
import urllib.parse |
|
import pandas as pd |
|
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download |
|
|
|
|
|
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, |
|
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS, |
|
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY) |
|
|
|
|
|
MODEL_TYPE_DICT = { |
|
"diffusers:StableDiffusionPipeline": "SD 1.5", |
|
"diffusers:StableDiffusionXLPipeline": "SDXL", |
|
"diffusers:FluxPipeline": "FLUX", |
|
} |
|
|
|
|
|
def get_user_agent(): |
|
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' |
|
|
|
|
|
def to_list(s): |
|
return [x.strip() for x in s.split(",") if not s == ""] |
|
|
|
|
|
def list_uniq(l): |
|
return sorted(set(l), key=l.index) |
|
|
|
|
|
def list_sub(a, b): |
|
return [e for e in a if e not in b] |
|
|
|
|
|
def is_repo_name(s): |
|
return re.fullmatch(r'^[^/]+?/[^/]+?$', s) |
|
|
|
|
|
from translatepy import Translator |
|
translator = Translator() |
|
def translate_to_en(input: str): |
|
try: |
|
output = str(translator.translate(input, 'English')) |
|
except Exception as e: |
|
output = input |
|
print(e) |
|
return output |
|
|
|
|
|
def get_local_model_list(dir_path): |
|
model_list = [] |
|
valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin') |
|
for file in Path(dir_path).glob("*"): |
|
if file.suffix in valid_extensions: |
|
file_path = str(Path(f"{dir_path}/{file.name}")) |
|
model_list.append(file_path) |
|
return model_list |
|
|
|
|
|
def get_token(): |
|
try: |
|
token = HfFolder.get_token() |
|
except Exception: |
|
token = "" |
|
return token |
|
|
|
|
|
def set_token(token): |
|
try: |
|
HfFolder.save_token(token) |
|
except Exception: |
|
print(f"Error: Failed to save token.") |
|
|
|
|
|
set_token(HF_TOKEN) |
|
|
|
|
|
def split_hf_url(url: str): |
|
try: |
|
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0]) |
|
if len(s) < 4: return "", "", "", "" |
|
repo_id = s[1] |
|
repo_type = "dataset" if s[0] == "datasets" else "model" |
|
subfolder = urllib.parse.unquote(s[2]) if s[2] else None |
|
filename = urllib.parse.unquote(s[3]) |
|
return repo_id, filename, subfolder, repo_type |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)): |
|
hf_token = get_token() |
|
repo_id, filename, subfolder, repo_type = split_hf_url(url) |
|
try: |
|
print(f"Downloading {url} to {directory}") |
|
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token) |
|
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token) |
|
return path |
|
except Exception as e: |
|
print(f"Failed to download: {e}") |
|
return None |
|
|
|
|
|
def download_things(directory, url, hf_token="", civitai_api_key=""): |
|
url = url.strip() |
|
if "drive.google.com" in url: |
|
original_dir = os.getcwd() |
|
os.chdir(directory) |
|
os.system(f"gdown --fuzzy {url}") |
|
os.chdir(original_dir) |
|
elif "huggingface.co" in url: |
|
url = url.replace("?download=true", "") |
|
|
|
if "/blob/" in url: |
|
url = url.replace("/blob/", "/resolve/") |
|
download_hf_file(directory, url) |
|
elif "civitai.com" in url: |
|
if "?" in url: |
|
url = url.split("?")[0] |
|
if civitai_api_key: |
|
url = url + f"?token={civitai_api_key}" |
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") |
|
else: |
|
print("\033[91mYou need an API key to download Civitai models.\033[0m") |
|
else: |
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") |
|
|
|
|
|
def get_download_file(temp_dir, url, civitai_key="", progress=gr.Progress(track_tqdm=True)): |
|
if not "http" in url and is_repo_name(url) and not Path(url).exists(): |
|
print(f"Use HF Repo: {url}") |
|
new_file = url |
|
elif not "http" in url and Path(url).exists(): |
|
print(f"Use local file: {url}") |
|
new_file = url |
|
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists(): |
|
print(f"File to download alreday exists: {url}") |
|
new_file = f"{temp_dir}/{url.split('/')[-1]}" |
|
else: |
|
print(f"Start downloading: {url}") |
|
before = get_local_model_list(temp_dir) |
|
try: |
|
download_things(temp_dir, url.strip(), HF_TOKEN, civitai_key) |
|
except Exception: |
|
print(f"Download failed: {url}") |
|
return "" |
|
after = get_local_model_list(temp_dir) |
|
new_file = list_sub(after, before)[0] if list_sub(after, before) else "" |
|
if not new_file: |
|
print(f"Download failed: {url}") |
|
return "" |
|
print(f"Download completed: {url}") |
|
return new_file |
|
|
|
|
|
def escape_lora_basename(basename: str): |
|
return basename.replace(".", "_").replace(" ", "_").replace(",", "") |
|
|
|
|
|
def to_lora_key(path: str): |
|
return escape_lora_basename(Path(path).stem) |
|
|
|
|
|
def to_lora_path(key: str): |
|
if Path(key).is_file(): return key |
|
path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors") |
|
return str(path) |
|
|
|
|
|
def safe_float(input): |
|
output = 1.0 |
|
try: |
|
output = float(input) |
|
except Exception: |
|
output = 1.0 |
|
return output |
|
|
|
|
|
def save_images(images: list[Image.Image], metadatas: list[str]): |
|
from PIL import PngImagePlugin |
|
import uuid |
|
try: |
|
output_images = [] |
|
for image, metadata in zip(images, metadatas): |
|
info = PngImagePlugin.PngInfo() |
|
info.add_text("parameters", metadata) |
|
savefile = f"{str(uuid.uuid4())}.png" |
|
image.save(savefile, "PNG", pnginfo=info) |
|
output_images.append(str(Path(savefile).resolve())) |
|
return output_images |
|
except Exception as e: |
|
print(f"Failed to save image file: {e}") |
|
raise Exception(f"Failed to save image file:") from e |
|
|
|
|
|
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)): |
|
from datetime import datetime, timezone, timedelta |
|
progress(0, desc="Updating gallery...") |
|
dt_now = datetime.now(timezone(timedelta(hours=9))) |
|
basename = dt_now.strftime('%Y%m%d_%H%M%S_') |
|
i = 1 |
|
if not images: return images, gr.update(visible=False) |
|
output_images = [] |
|
output_paths = [] |
|
for image in images: |
|
filename = basename + str(i) + ".png" |
|
i += 1 |
|
oldpath = Path(image[0]) |
|
newpath = oldpath |
|
try: |
|
if oldpath.exists(): |
|
newpath = oldpath.resolve().rename(Path(filename).resolve()) |
|
except Exception as e: |
|
print(e) |
|
finally: |
|
output_paths.append(str(newpath)) |
|
output_images.append((str(newpath), str(filename))) |
|
progress(1, desc="Gallery updated.") |
|
return gr.update(value=output_images), gr.update(value=output_paths, visible=True) |
|
|
|
|
|
def download_private_repo(repo_id, dir_path, is_replace): |
|
if not hf_read_token: return |
|
try: |
|
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token) |
|
except Exception as e: |
|
print(f"Error: Failed to download {repo_id}.") |
|
print(e) |
|
return |
|
if is_replace: |
|
for file in Path(dir_path).glob("*"): |
|
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: |
|
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') |
|
file.resolve().rename(newpath.resolve()) |
|
|
|
|
|
private_model_path_repo_dict = {} |
|
|
|
|
|
def get_private_model_list(repo_id, dir_path): |
|
global private_model_path_repo_dict |
|
api = HfApi() |
|
if not hf_read_token: return [] |
|
try: |
|
files = api.list_repo_files(repo_id, token=hf_read_token) |
|
except Exception as e: |
|
print(f"Error: Failed to list {repo_id}.") |
|
print(e) |
|
return [] |
|
model_list = [] |
|
for file in files: |
|
path = Path(f"{dir_path}/{file}") |
|
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: |
|
model_list.append(str(path)) |
|
for model in model_list: |
|
private_model_path_repo_dict[model] = repo_id |
|
return model_list |
|
|
|
|
|
def download_private_file(repo_id, path, is_replace): |
|
file = Path(path) |
|
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file |
|
if not hf_read_token or newpath.exists(): return |
|
filename = file.name |
|
dirname = file.parent.name |
|
try: |
|
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token) |
|
except Exception as e: |
|
print(f"Error: Failed to download {filename}.") |
|
print(e) |
|
return |
|
if is_replace: |
|
file.resolve().rename(newpath.resolve()) |
|
|
|
|
|
def download_private_file_from_somewhere(path, is_replace): |
|
if not path in private_model_path_repo_dict.keys(): return |
|
repo_id = private_model_path_repo_dict.get(path, None) |
|
download_private_file(repo_id, path, is_replace) |
|
|
|
|
|
model_id_list = [] |
|
def get_model_id_list(): |
|
global model_id_list |
|
if len(model_id_list) != 0: return model_id_list |
|
api = HfApi() |
|
model_ids = [] |
|
try: |
|
models_likes = [] |
|
for author in HF_MODEL_USER_LIKES: |
|
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes")) |
|
models_ex = [] |
|
for author in HF_MODEL_USER_EX: |
|
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified") |
|
except Exception as e: |
|
print(f"Error: Failed to list {author}'s models.") |
|
print(e) |
|
return model_ids |
|
for model in models_likes: |
|
model_ids.append(model.id) if not model.private else "" |
|
anime_models = [] |
|
real_models = [] |
|
anime_models_flux = [] |
|
real_models_flux = [] |
|
for model in models_ex: |
|
if not model.private and not model.gated: |
|
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id) |
|
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id) |
|
model_ids.extend(anime_models) |
|
model_ids.extend(real_models) |
|
model_ids.extend(anime_models_flux) |
|
model_ids.extend(real_models_flux) |
|
model_id_list = model_ids.copy() |
|
return model_ids |
|
|
|
|
|
model_id_list = get_model_id_list() |
|
|
|
|
|
def get_t2i_model_info(repo_id: str): |
|
api = HfApi(token=HF_TOKEN) |
|
try: |
|
if not is_repo_name(repo_id): return "" |
|
model = api.model_info(repo_id=repo_id, timeout=5.0) |
|
except Exception as e: |
|
print(f"Error: Failed to get {repo_id}'s info.") |
|
print(e) |
|
return "" |
|
if model.private or model.gated: return "" |
|
tags = model.tags |
|
info = [] |
|
url = f"https://huggingface.co/{repo_id}/" |
|
if not 'diffusers' in tags: return "" |
|
for k, v in MODEL_TYPE_DICT.items(): |
|
if k in tags: info.append(v) |
|
if model.card_data and model.card_data.tags: |
|
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) |
|
info.append(f"DLs: {model.downloads}") |
|
info.append(f"likes: {model.likes}") |
|
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d")) |
|
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})" |
|
return gr.update(value=md) |
|
|
|
|
|
def get_tupled_model_list(model_list): |
|
if not model_list: return [] |
|
tupled_list = [] |
|
for repo_id in model_list: |
|
api = HfApi() |
|
try: |
|
if not api.repo_exists(repo_id): continue |
|
model = api.model_info(repo_id=repo_id) |
|
except Exception as e: |
|
print(e) |
|
continue |
|
if model.private or model.gated: continue |
|
tags = model.tags |
|
info = [] |
|
if not 'diffusers' in tags: continue |
|
for k, v in MODEL_TYPE_DICT.items(): |
|
if k in tags: info.append(v) |
|
if model.card_data and model.card_data.tags: |
|
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) |
|
if "pony" in info: |
|
info.remove("pony") |
|
name = f"{repo_id} (Pony🐴, {', '.join(info)})" |
|
else: |
|
name = f"{repo_id} ({', '.join(info)})" |
|
tupled_list.append((name, repo_id)) |
|
return tupled_list |
|
|
|
|
|
private_lora_dict = {} |
|
try: |
|
with open('lora_dict.json', encoding='utf-8') as f: |
|
d = json.load(f) |
|
for k, v in d.items(): |
|
private_lora_dict[escape_lora_basename(k)] = v |
|
except Exception as e: |
|
print(e) |
|
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy() |
|
civitai_not_exists_list = [] |
|
loras_url_to_path_dict = {} |
|
civitai_last_results = {} |
|
civitai_last_choices = [("", "")] |
|
civitai_last_gallery = [] |
|
all_lora_list = [] |
|
|
|
|
|
private_lora_model_list = [] |
|
def get_private_lora_model_lists(): |
|
global private_lora_model_list |
|
if len(private_lora_model_list) != 0: return private_lora_model_list |
|
models1 = [] |
|
models2 = [] |
|
for repo in HF_LORA_PRIVATE_REPOS1: |
|
models1.extend(get_private_model_list(repo, directory_loras)) |
|
for repo in HF_LORA_PRIVATE_REPOS2: |
|
models2.extend(get_private_model_list(repo, directory_loras)) |
|
models = list_uniq(models1 + sorted(models2)) |
|
private_lora_model_list = models.copy() |
|
return models |
|
|
|
|
|
private_lora_model_list = get_private_lora_model_lists() |
|
|
|
|
|
def get_civitai_info(path): |
|
global civitai_not_exists_list |
|
if path in set(civitai_not_exists_list): return ["", "", "", "", ""] |
|
if not Path(path).exists(): return None |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' |
|
params = {} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
import hashlib |
|
with open(path, 'rb') as file: |
|
file_data = file.read() |
|
hash_sha256 = hashlib.sha256(file_data).hexdigest() |
|
url = base_url + hash_sha256 |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
except Exception as e: |
|
print(e) |
|
return ["", "", "", "", ""] |
|
if not r.ok: return None |
|
json = r.json() |
|
if not 'baseModel' in json: |
|
civitai_not_exists_list.append(path) |
|
return ["", "", "", "", ""] |
|
items = [] |
|
items.append(" / ".join(json['trainedWords'])) |
|
items.append(json['baseModel']) |
|
items.append(json['model']['name']) |
|
items.append(f"https://civitai.com/models/{json['modelId']}") |
|
items.append(json['images'][0]['url']) |
|
return items |
|
|
|
|
|
def get_lora_model_list(): |
|
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS) |
|
loras.insert(0, "None") |
|
loras.insert(0, "") |
|
return loras |
|
|
|
|
|
def get_all_lora_list(): |
|
global all_lora_list |
|
loras = get_lora_model_list() |
|
all_lora_list = loras.copy() |
|
return loras |
|
|
|
|
|
def get_all_lora_tupled_list(): |
|
global loras_dict |
|
models = get_all_lora_list() |
|
if not models: return [] |
|
tupled_list = [] |
|
for model in models: |
|
|
|
basename = Path(model).stem |
|
key = to_lora_key(model) |
|
items = None |
|
if key in loras_dict.keys(): |
|
items = loras_dict.get(key, None) |
|
else: |
|
items = get_civitai_info(model) |
|
if items != None: |
|
loras_dict[key] = items |
|
name = basename |
|
value = model |
|
if items and items[2] != "": |
|
if items[1] == "Pony": |
|
name = f"{basename} (for {items[1]}🐴, {items[2]})" |
|
else: |
|
name = f"{basename} (for {items[1]}, {items[2]})" |
|
tupled_list.append((name, value)) |
|
return tupled_list |
|
|
|
|
|
def update_lora_dict(path): |
|
global loras_dict |
|
key = escape_lora_basename(Path(path).stem) |
|
if key in loras_dict.keys(): return |
|
items = get_civitai_info(path) |
|
if items == None: return |
|
loras_dict[key] = items |
|
|
|
|
|
def download_lora(dl_urls: str): |
|
global loras_url_to_path_dict |
|
dl_path = "" |
|
before = get_local_model_list(directory_loras) |
|
urls = [] |
|
for url in [url.strip() for url in dl_urls.split(',')]: |
|
local_path = f"{directory_loras}/{url.split('/')[-1]}" |
|
if not Path(local_path).exists(): |
|
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY) |
|
urls.append(url) |
|
after = get_local_model_list(directory_loras) |
|
new_files = list_sub(after, before) |
|
i = 0 |
|
for file in new_files: |
|
path = Path(file) |
|
if path.exists(): |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(new_path.resolve()) |
|
loras_url_to_path_dict[urls[i]] = str(new_path) |
|
update_lora_dict(str(new_path)) |
|
dl_path = str(new_path) |
|
i += 1 |
|
return dl_path |
|
|
|
|
|
def copy_lora(path: str, new_path: str): |
|
if path == new_path: return new_path |
|
cpath = Path(path) |
|
npath = Path(new_path) |
|
if cpath.exists(): |
|
try: |
|
shutil.copy(str(cpath.resolve()), str(npath.resolve())) |
|
except Exception as e: |
|
print(e) |
|
return None |
|
update_lora_dict(str(npath)) |
|
return new_path |
|
else: |
|
return None |
|
|
|
|
|
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str): |
|
path = download_lora(dl_urls) |
|
if path: |
|
if not lora1 or lora1 == "None": |
|
lora1 = path |
|
elif not lora2 or lora2 == "None": |
|
lora2 = path |
|
elif not lora3 or lora3 == "None": |
|
lora3 = path |
|
elif not lora4 or lora4 == "None": |
|
lora4 = path |
|
elif not lora5 or lora5 == "None": |
|
lora5 = path |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\ |
|
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices) |
|
|
|
|
|
def get_valid_lora_name(query: str, model_name: str): |
|
path = "None" |
|
if not query or query == "None": return "None" |
|
if to_lora_key(query) in loras_dict.keys(): return query |
|
if query in loras_url_to_path_dict.keys(): |
|
path = loras_url_to_path_dict[query] |
|
else: |
|
path = to_lora_path(query.strip().split('/')[-1]) |
|
if Path(path).exists(): |
|
return path |
|
elif "http" in query: |
|
dl_file = download_lora(query) |
|
if dl_file and Path(dl_file).exists(): return dl_file |
|
else: |
|
dl_file = find_similar_lora(query, model_name) |
|
if dl_file and Path(dl_file).exists(): return dl_file |
|
return "None" |
|
|
|
|
|
def get_valid_lora_path(query: str): |
|
path = None |
|
if not query or query == "None": return None |
|
if to_lora_key(query) in loras_dict.keys(): return query |
|
if Path(path).exists(): |
|
return path |
|
else: |
|
return None |
|
|
|
|
|
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float): |
|
wt = lora_wt |
|
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt) |
|
if not result: return wt |
|
wt = safe_float(result[0][0]) |
|
return wt |
|
|
|
|
|
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): |
|
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
lora1 = get_valid_lora_name(lora1, model_name) |
|
lora2 = get_valid_lora_name(lora2, model_name) |
|
lora3 = get_valid_lora_name(lora3, model_name) |
|
lora4 = get_valid_lora_name(lora4, model_name) |
|
lora5 = get_valid_lora_name(lora5, model_name) |
|
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt) |
|
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt) |
|
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt) |
|
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt) |
|
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt) |
|
on1, label1, tag1, md1 = get_lora_info(lora1) |
|
on2, label2, tag2, md2 = get_lora_info(lora2) |
|
on3, label3, tag3, md3 = get_lora_info(lora3) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
on5, label5, tag5, md5 = get_lora_info(lora5) |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
prompts = prompt.split(",") if prompt else [] |
|
for p in prompts: |
|
p = str(p).strip() |
|
if "<lora" in p: |
|
result = re.findall(r'<lora:(.+?):(.+?)>', p) |
|
if not result: continue |
|
key = result[0][0] |
|
wt = result[0][1] |
|
path = to_lora_path(key) |
|
if not key in loras_dict.keys() or not path: |
|
path = get_valid_lora_name(path) |
|
if not path or path == "None": continue |
|
if path in lora_paths: |
|
continue |
|
elif not on1: |
|
lora1 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora1_wt = safe_float(wt) |
|
on1 = True |
|
elif not on2: |
|
lora2 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora2_wt = safe_float(wt) |
|
on2 = True |
|
elif not on3: |
|
lora3 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora3_wt = safe_float(wt) |
|
on3 = True |
|
elif not on4: |
|
lora4 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora4_wt = safe_float(wt) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
elif not on5: |
|
lora5 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora5_wt = safe_float(wt) |
|
on5 = True |
|
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
|
|
|
|
def get_lora_info(lora_path: str): |
|
is_valid = False |
|
tag = "" |
|
label = "" |
|
md = "None" |
|
if not lora_path or lora_path == "None": |
|
print("LoRA file not found.") |
|
return is_valid, label, tag, md |
|
path = Path(lora_path) |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()): |
|
print("LoRA file is not registered.") |
|
return tag, label, tag, md |
|
if not new_path.exists(): |
|
download_private_file_from_somewhere(str(path), True) |
|
basename = new_path.stem |
|
label = f'Name: {basename}' |
|
items = loras_dict.get(basename, None) |
|
if items == None: |
|
items = get_civitai_info(str(new_path)) |
|
if items != None: |
|
loras_dict[basename] = items |
|
if items and items[2] != "": |
|
tag = items[0] |
|
label = f'Name: {basename}' |
|
if items[1] == "Pony": |
|
label = f'Name: {basename} (for Pony🐴)' |
|
if items[4]: |
|
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})' |
|
elif items[3]: |
|
md = f'[LoRA Model URL]({items[3]})' |
|
is_valid = True |
|
return is_valid, label, tag, md |
|
|
|
|
|
def normalize_prompt_list(tags: list[str]): |
|
prompts = [] |
|
for tag in tags: |
|
tag = str(tag).strip() |
|
if tag: |
|
prompts.append(tag) |
|
return prompts |
|
|
|
|
|
def apply_lora_prompt(prompt: str = "", lora_info: str = ""): |
|
if lora_info == "None": return gr.update(value=prompt) |
|
tags = prompt.split(",") if prompt else [] |
|
prompts = normalize_prompt_list(tags) |
|
|
|
lora_tag = lora_info.replace("/",",") |
|
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] |
|
lora_prompts = normalize_prompt_list(lora_tags) |
|
|
|
empty = [""] |
|
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty) |
|
return gr.update(value=prompt) |
|
|
|
|
|
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): |
|
on1, label1, tag1, md1 = get_lora_info(lora1) |
|
on2, label2, tag2, md2 = get_lora_info(lora2) |
|
on3, label3, tag3, md3 = get_lora_info(lora3) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
on5, label5, tag5, md5 = get_lora_info(lora5) |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
|
|
output_prompt = prompt |
|
if "Classic" in str(prompt_syntax): |
|
prompts = prompt.split(",") if prompt else [] |
|
output_prompts = [] |
|
for p in prompts: |
|
p = str(p).strip() |
|
if "<lora" in p: |
|
result = re.findall(r'<lora:(.+?):(.+?)>', p) |
|
if not result: continue |
|
key = result[0][0] |
|
wt = result[0][1] |
|
path = to_lora_path(key) |
|
if not key in loras_dict.keys() or not path: continue |
|
if path in lora_paths: |
|
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>") |
|
elif p: |
|
output_prompts.append(p) |
|
lora_prompts = [] |
|
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>") |
|
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>") |
|
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>") |
|
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>") |
|
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>") |
|
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""])) |
|
choices = get_all_lora_tupled_list() |
|
|
|
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\ |
|
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\ |
|
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\ |
|
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\ |
|
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\ |
|
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\ |
|
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\ |
|
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\ |
|
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\ |
|
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5) |
|
|
|
|
|
def get_my_lora(link_url): |
|
before = get_local_model_list(directory_loras) |
|
for url in [url.strip() for url in link_url.split(',')]: |
|
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists(): |
|
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY) |
|
after = get_local_model_list(directory_loras) |
|
new_files = list_sub(after, before) |
|
for file in new_files: |
|
path = Path(file) |
|
if path.exists(): |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(new_path.resolve()) |
|
update_lora_dict(str(new_path)) |
|
new_lora_model_list = get_lora_model_list() |
|
new_lora_tupled_list = get_all_lora_tupled_list() |
|
|
|
return gr.update( |
|
choices=new_lora_tupled_list, value=new_lora_model_list[-1] |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
) |
|
|
|
|
|
def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)): |
|
progress(0, desc="Uploading...") |
|
file_paths = [file.name for file in files] |
|
progress(1, desc="Uploaded.") |
|
return gr.update(value=file_paths, visible=True), gr.update(visible=True) |
|
|
|
|
|
def move_file_lora(filepaths): |
|
for file in filepaths: |
|
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve())) |
|
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(newpath.resolve()) |
|
update_lora_dict(str(newpath)) |
|
|
|
new_lora_model_list = get_lora_model_list() |
|
new_lora_tupled_list = get_all_lora_tupled_list() |
|
|
|
return gr.update( |
|
choices=new_lora_tupled_list, value=new_lora_model_list[-1] |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
) |
|
|
|
|
|
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"] |
|
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"] |
|
CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"] |
|
|
|
|
|
def get_civitai_info(path): |
|
global civitai_not_exists_list, loras_url_to_path_dict |
|
default = ["", "", "", "", ""] |
|
if path in set(civitai_not_exists_list): return default |
|
if not Path(path).exists(): return None |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' |
|
params = {} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
import hashlib |
|
with open(path, 'rb') as file: |
|
file_data = file.read() |
|
hash_sha256 = hashlib.sha256(file_data).hexdigest() |
|
url = base_url + hash_sha256 |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
except Exception as e: |
|
print(e) |
|
return default |
|
else: |
|
if not r.ok: return None |
|
json = r.json() |
|
if 'baseModel' not in json: |
|
civitai_not_exists_list.append(path) |
|
return default |
|
items = [] |
|
items.append(" / ".join(json['trainedWords'])) |
|
items.append(json['baseModel']) |
|
items.append(json['model']['name']) |
|
items.append(f"https://civitai.com/models/{json['modelId']}") |
|
items.append(json['images'][0]['url']) |
|
loras_url_to_path_dict[path] = json['downloadUrl'] |
|
return items |
|
|
|
|
|
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100, |
|
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1): |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/models' |
|
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'} |
|
if query: params["query"] = query |
|
if tag: params["tag"] = tag |
|
if user: params["username"] = user |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
try: |
|
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30)) |
|
except Exception as e: |
|
print(e) |
|
return None |
|
else: |
|
if not r.ok: return None |
|
json = r.json() |
|
if 'items' not in json: return None |
|
items = [] |
|
for j in json['items']: |
|
for model in j['modelVersions']: |
|
item = {} |
|
if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue |
|
item['name'] = j['name'] |
|
item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else "" |
|
item['tags'] = j['tags'] if 'tags' in j.keys() else [] |
|
item['model_name'] = model['name'] if 'name' in model.keys() else "" |
|
item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else "" |
|
item['description'] = model['description'] if 'description' in model.keys() else "" |
|
item['dl_url'] = model['downloadUrl'] |
|
item['md'] = "" |
|
if 'images' in model.keys() and len(model["images"]) != 0: |
|
item['img_url'] = model["images"][0]["url"] |
|
item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>' |
|
else: item['img_url'] = "/home/user/app/null.png" |
|
item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br> |
|
Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}''' |
|
items.append(item) |
|
return items |
|
|
|
|
|
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]): |
|
global civitai_last_results, civitai_last_choices, civitai_last_gallery |
|
civitai_last_choices = [("", "")] |
|
civitai_last_gallery = [] |
|
civitai_last_results = {} |
|
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user) |
|
if not items: return gr.update(choices=[("", "")], value="", visible=False),\ |
|
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
civitai_last_results = {} |
|
choices = [] |
|
gallery = [] |
|
for item in items: |
|
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model'] |
|
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})" |
|
value = item['dl_url'] |
|
choices.append((name, value)) |
|
gallery.append((item['img_url'], name)) |
|
civitai_last_results[value] = item |
|
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\ |
|
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
civitai_last_choices = choices |
|
civitai_last_gallery = gallery |
|
result = civitai_last_results.get(choices[0][1], "None") |
|
md = result['md'] if result else "" |
|
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\ |
|
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery) |
|
|
|
|
|
def update_civitai_selection(evt: gr.SelectData): |
|
try: |
|
selected_index = evt.index |
|
selected = civitai_last_choices[selected_index][1] |
|
return gr.update(value=selected) |
|
except Exception: |
|
return gr.update(visible=True) |
|
|
|
|
|
def select_civitai_lora(search_result): |
|
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True) |
|
result = civitai_last_results.get(search_result, "None") |
|
md = result['md'] if result else "" |
|
return gr.update(value=search_result), gr.update(value=md, visible=True) |
|
|
|
|
|
def download_my_lora_flux(dl_urls: str, lora): |
|
path = download_lora(dl_urls) |
|
if path: lora = path |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=lora, choices=choices) |
|
|
|
|
|
def apply_lora_prompt_flux(lora_info: str): |
|
if lora_info == "None": return "" |
|
lora_tag = lora_info.replace("/",",") |
|
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] |
|
lora_prompts = normalize_prompt_list(lora_tags) |
|
prompt = ", ".join(list_uniq(lora_prompts)) |
|
return prompt |
|
|
|
|
|
def update_loras_flux(prompt, lora, lora_wt): |
|
on, label, tag, md = get_lora_info(lora) |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\ |
|
gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on) |
|
|
|
|
|
def search_civitai_lora_json(query, base_model): |
|
results = {} |
|
items = search_lora_on_civitai(query, base_model) |
|
if not items: return gr.update(value=results) |
|
for item in items: |
|
results[item['dl_url']] = item |
|
return gr.update(value=results) |
|
|
|
|
|
def get_civitai_tag(): |
|
default = [""] |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/tags' |
|
params = {'limit': 200} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
url = base_url |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
if not r.ok: return default |
|
j = dict(r.json()).copy() |
|
if "items" not in j.keys(): return default |
|
items = [] |
|
for item in j["items"]: |
|
items.append([str(item.get("name", "")), int(item.get("modelCount", 0))]) |
|
df = pd.DataFrame(items) |
|
df.sort_values(1, ascending=False) |
|
tags = df.values.tolist() |
|
tags = [""] + [l[0] for l in tags] |
|
return tags |
|
except Exception as e: |
|
print(e) |
|
return default |
|
|
|
|
|
LORA_BASE_MODEL_DICT = { |
|
"diffusers:StableDiffusionPipeline": ["SD 1.5"], |
|
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"], |
|
"diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"], |
|
} |
|
|
|
|
|
def get_lora_base_model(model_name: str): |
|
api = HfApi(token=HF_TOKEN) |
|
default = ["Pony", "SDXL 1.0"] |
|
try: |
|
model = api.model_info(repo_id=model_name, timeout=5.0) |
|
tags = model.tags |
|
for tag in tags: |
|
if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default) |
|
except Exception: |
|
return default |
|
return default |
|
|
|
|
|
def find_similar_lora(q: str, model_name: str): |
|
from rapidfuzz.process import extractOne |
|
from rapidfuzz.utils import default_process |
|
query = to_lora_key(q) |
|
print(f"Finding <lora:{query}:...>...") |
|
keys = list(private_lora_dict.keys()) |
|
values = [x[2] for x in list(private_lora_dict.values())] |
|
s = default_process(query) |
|
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0) |
|
key = "" |
|
if e1: |
|
e = e1[0] |
|
if e in set(keys): key = e |
|
elif e in set(values): key = keys[values.index(e)] |
|
if key: |
|
path = to_lora_path(key) |
|
new_path = to_lora_path(query) |
|
if not Path(path).exists(): |
|
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True) |
|
if Path(path).exists() and copy_lora(path, new_path): return new_path |
|
print(f"Finding <lora:{query}:...> on Civitai...") |
|
civitai_query = Path(query).stem if Path(query).is_file() else query |
|
civitai_query = civitai_query.replace("_", " ").replace("-", " ") |
|
base_model = get_lora_base_model(model_name) |
|
items = search_lora_on_civitai(civitai_query, base_model, 1) |
|
if items: |
|
item = items[0] |
|
path = download_lora(item['dl_url']) |
|
new_path = query if Path(query).is_file() else to_lora_path(query) |
|
if path and copy_lora(path, new_path): return new_path |
|
return None |
|
|
|
|
|
def change_interface_mode(mode: str): |
|
if mode == "Fast": |
|
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(value="Fast") |
|
elif mode == "Simple": |
|
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\ |
|
gr.update(visible=False), gr.update(value="Standard") |
|
elif mode == "LoRA": |
|
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=False), gr.update(value="Standard") |
|
else: |
|
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(value="Standard") |
|
|
|
|
|
quality_prompt_list = [ |
|
{ |
|
"name": "None", |
|
"prompt": "", |
|
"negative_prompt": "lowres", |
|
}, |
|
{ |
|
"name": "Animagine Common", |
|
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
}, |
|
{ |
|
"name": "Pony Anime Common", |
|
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", |
|
}, |
|
{ |
|
"name": "Pony Common", |
|
"prompt": "source_anime, score_9, score_8_up, score_7_up", |
|
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", |
|
}, |
|
{ |
|
"name": "Animagine Standard v3.0", |
|
"prompt": "masterpiece, best quality", |
|
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name", |
|
}, |
|
{ |
|
"name": "Animagine Standard v3.1", |
|
"prompt": "masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
}, |
|
{ |
|
"name": "Animagine Light v3.1", |
|
"prompt": "(masterpiece), best quality, very aesthetic, perfect face", |
|
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn", |
|
}, |
|
{ |
|
"name": "Animagine Heavy v3.1", |
|
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details", |
|
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing", |
|
}, |
|
] |
|
|
|
|
|
style_list = [ |
|
{ |
|
"name": "None", |
|
"prompt": "", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
|
|
optimization_list = { |
|
"None": [28, 7., 'Euler a', False, 'None', 1.], |
|
"Default": [28, 7., 'Euler a', False, 'None', 1.], |
|
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.], |
|
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.], |
|
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.], |
|
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.], |
|
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.], |
|
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.], |
|
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.], |
|
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.], |
|
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.], |
|
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.], |
|
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.], |
|
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.], |
|
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.], |
|
} |
|
|
|
|
|
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui): |
|
if not opt in list(optimization_list.keys()): opt = "None" |
|
def_steps_gui = 28 |
|
def_cfg_gui = 7. |
|
steps = optimization_list.get(opt, "None")[0] |
|
cfg = optimization_list.get(opt, "None")[1] |
|
sampler = optimization_list.get(opt, "None")[2] |
|
clip_skip = optimization_list.get(opt, "None")[3] |
|
lora = optimization_list.get(opt, "None")[4] |
|
lora_scale = optimization_list.get(opt, "None")[5] |
|
if opt == "None": |
|
steps = max(steps_gui, def_steps_gui) |
|
cfg = max(cfg_gui, def_cfg_gui) |
|
clip_skip = clip_skip_gui |
|
elif opt == "SPO" or opt == "DPO": |
|
steps = max(steps_gui, def_steps_gui) |
|
cfg = max(cfg_gui, def_cfg_gui) |
|
|
|
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\ |
|
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale), |
|
|
|
|
|
|
|
preset_sampler_setting = { |
|
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"], |
|
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"], |
|
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"], |
|
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"], |
|
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"], |
|
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"], |
|
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"], |
|
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"], |
|
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"], |
|
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"], |
|
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"], |
|
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"], |
|
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"], |
|
} |
|
|
|
|
|
def set_sampler_settings(sampler_setting): |
|
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None": |
|
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\ |
|
gr.update(value=1024), gr.update(value=1024), gr.update(value="None") |
|
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024]) |
|
|
|
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\ |
|
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6]) |
|
|
|
|
|
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list} |
|
|
|
|
|
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"): |
|
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres") |
|
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") |
|
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") |
|
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") |
|
prompts = to_list(prompt) |
|
neg_prompts = to_list(neg_prompt) |
|
|
|
all_styles_ps = [] |
|
all_styles_nps = [] |
|
for d in style_list: |
|
all_styles_ps.extend(to_list(str(d.get("prompt", "")))) |
|
all_styles_nps.extend(to_list(str(d.get("negative_prompt", "")))) |
|
|
|
all_quality_ps = [] |
|
all_quality_nps = [] |
|
for d in quality_prompt_list: |
|
all_quality_ps.extend(to_list(str(d.get("prompt", "")))) |
|
all_quality_nps.extend(to_list(str(d.get("negative_prompt", "")))) |
|
|
|
quality_ps = to_list(preset_quality[quality_key][0]) |
|
quality_nps = to_list(preset_quality[quality_key][1]) |
|
styles_ps = to_list(preset_styles[styles_key][0]) |
|
styles_nps = to_list(preset_styles[styles_key][1]) |
|
|
|
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps) |
|
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps) |
|
|
|
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] |
|
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] |
|
|
|
if type == "Animagine": |
|
prompts = prompts + animagine_ps |
|
neg_prompts = neg_prompts + animagine_nps |
|
elif type == "Pony": |
|
prompts = prompts + pony_ps |
|
neg_prompts = neg_prompts + pony_nps |
|
|
|
prompts = prompts + styles_ps + quality_ps |
|
neg_prompts = neg_prompts + styles_nps + quality_nps |
|
|
|
prompt = ", ".join(list_uniq(prompts) + last_empty_p) |
|
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) |
|
|
|
return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) |
|
|
|
|
|
def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"): |
|
quality = "None" |
|
style = "None" |
|
sampler = "None" |
|
opt = "None" |
|
|
|
if genre == "Anime": |
|
if type != "None" and type != "Auto": style = "Anime" |
|
if aspect == "1:1": |
|
if speed == "Heavy": |
|
sampler = "Anime 1:1 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Anime 1:1 Fast" |
|
else: |
|
sampler = "Anime 1:1 Standard" |
|
elif aspect == "3:4": |
|
if speed == "Heavy": |
|
sampler = "Anime 3:4 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Anime 3:4 Fast" |
|
else: |
|
sampler = "Anime 3:4 Standard" |
|
if type == "Pony": |
|
quality = "Pony Anime Common" |
|
elif type == "Animagine": |
|
quality = "Animagine Common" |
|
else: |
|
quality = "None" |
|
elif genre == "Photo": |
|
if type != "None" and type != "Auto": style = "Photographic" |
|
if aspect == "1:1": |
|
if speed == "Heavy": |
|
sampler = "Photo 1:1 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Photo 1:1 Fast" |
|
else: |
|
sampler = "Photo 1:1 Standard" |
|
elif aspect == "3:4": |
|
if speed == "Heavy": |
|
sampler = "Photo 3:4 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Photo 3:4 Fast" |
|
else: |
|
sampler = "Photo 3:4 Standard" |
|
if type == "Pony": |
|
quality = "Pony Common" |
|
else: |
|
quality = "None" |
|
|
|
if speed == "Fast": |
|
opt = "DPO Turbo" |
|
if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1" |
|
|
|
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type) |
|
|
|
|
|
textual_inversion_dict = {} |
|
try: |
|
with open('textual_inversion_dict.json', encoding='utf-8') as f: |
|
textual_inversion_dict = json.load(f) |
|
except Exception: |
|
pass |
|
textual_inversion_file_token_list = [] |
|
|
|
|
|
def get_tupled_embed_list(embed_list): |
|
global textual_inversion_file_list |
|
tupled_list = [] |
|
for file in embed_list: |
|
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0] |
|
tupled_list.append((token, file)) |
|
textual_inversion_file_token_list.append(token) |
|
return tupled_list |
|
|
|
|
|
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui): |
|
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list |
|
tags = prompt_gui.split(",") if prompt_gui else [] |
|
prompts = [] |
|
for tag in tags: |
|
tag = str(tag).strip() |
|
if tag and not tag in ti_tags: |
|
prompts.append(tag) |
|
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else [] |
|
neg_prompts = [] |
|
for tag in ntags: |
|
tag = str(tag).strip() |
|
if tag and not tag in ti_tags: |
|
neg_prompts.append(tag) |
|
ti_prompts = [] |
|
ti_neg_prompts = [] |
|
for ti in textual_inversion_gui: |
|
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False]) |
|
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name |
|
if is_positive: |
|
ti_prompts.append(tokens[0]) |
|
else: |
|
ti_neg_prompts.append(tokens[0]) |
|
empty = [""] |
|
prompt = ", ".join(prompts + ti_prompts + empty) |
|
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty) |
|
return gr.update(value=prompt), gr.update(value=neg_prompt), |
|
|
|
|
|
def get_model_pipeline(repo_id: str): |
|
api = HfApi(token=HF_TOKEN) |
|
default = "StableDiffusionPipeline" |
|
try: |
|
if not is_repo_name(repo_id): return default |
|
model = api.model_info(repo_id=repo_id, timeout=5.0) |
|
except Exception: |
|
return default |
|
if model.private or model.gated: return default |
|
tags = model.tags |
|
if not 'diffusers' in tags: return default |
|
if 'diffusers:FluxPipeline' in tags: |
|
return "FluxPipeline" |
|
if 'diffusers:StableDiffusionXLPipeline' in tags: |
|
return "StableDiffusionXLPipeline" |
|
elif 'diffusers:StableDiffusionPipeline' in tags: |
|
return "StableDiffusionPipeline" |
|
else: |
|
return default |
|
|
|
|