|
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
import spaces
|
|
import re
|
|
from PIL import Image
|
|
import torch
|
|
|
|
import subprocess
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cpu").eval()
|
|
fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
|
|
|
|
|
|
def fl_modify_caption(caption: str) -> str:
|
|
"""
|
|
Removes specific prefixes from captions if present, otherwise returns the original caption.
|
|
Args:
|
|
caption (str): A string containing a caption.
|
|
Returns:
|
|
str: The caption with the prefix removed if it was present, or the original caption.
|
|
"""
|
|
|
|
prefix_substrings = [
|
|
('captured from ', ''),
|
|
('captured at ', '')
|
|
]
|
|
|
|
|
|
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
|
|
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
|
|
|
|
|
|
def replace_fn(match):
|
|
return replacers[match.group(0).lower()]
|
|
|
|
|
|
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
|
|
|
|
|
|
return modified_caption if modified_caption != caption else caption
|
|
|
|
|
|
@spaces.GPU(duration=30)
|
|
def fl_run_example(image):
|
|
task_prompt = "<DESCRIPTION>"
|
|
prompt = task_prompt + "Describe this image in great detail."
|
|
|
|
|
|
if image.mode != "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
fl_model.to(device)
|
|
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
|
generated_ids = fl_model.generate(
|
|
input_ids=inputs["input_ids"],
|
|
pixel_values=inputs["pixel_values"],
|
|
max_new_tokens=1024,
|
|
num_beams=3
|
|
)
|
|
fl_model.to("cpu")
|
|
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
|
return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
|
|
|
|
|
|
def predict_tags_fl2_sd3(image: Image.Image, input_tags: str, algo: list[str]):
|
|
def to_list(s):
|
|
return [x.strip() for x in s.split(",") if not s == ""]
|
|
|
|
def list_uniq(l):
|
|
return sorted(set(l), key=l.index)
|
|
|
|
if not "Use Florence-2-SD3-Long-Captioner" in algo:
|
|
return input_tags
|
|
tag_list = list_uniq(to_list(input_tags) + to_list(fl_run_example(image) + ", "))
|
|
tag_list.remove("")
|
|
return ", ".join(tag_list)
|
|
|