testvp / tagger /fl2sd3longcap.py
John6666's picture
Upload 24 files
76dc483 verified
raw
history blame
3.1 kB
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
import re
from PIL import Image
import torch
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
fl_model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cpu").eval()
fl_processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
def fl_modify_caption(caption: str) -> str:
"""
Removes specific prefixes from captions if present, otherwise returns the original caption.
Args:
caption (str): A string containing a caption.
Returns:
str: The caption with the prefix removed if it was present, or the original caption.
"""
# Define the prefixes to remove
prefix_substrings = [
('captured from ', ''),
('captured at ', '')
]
# Create a regex pattern to match any of the prefixes
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
# Function to replace matched prefix with its corresponding replacement
def replace_fn(match):
return replacers[match.group(0).lower()]
# Apply the regex to the caption
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
# If the caption was modified, return the modified version; otherwise, return the original
return modified_caption if modified_caption != caption else caption
@spaces.GPU(duration=30)
def fl_run_example(image):
task_prompt = "<DESCRIPTION>"
prompt = task_prompt + "Describe this image in great detail."
# Ensure the image is in RGB mode
if image.mode != "RGB":
image = image.convert("RGB")
fl_model.to(device)
inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = fl_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
fl_model.to("cpu")
generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = fl_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return fl_modify_caption(parsed_answer["<DESCRIPTION>"])
def predict_tags_fl2_sd3(image: Image.Image, input_tags: str, algo: list[str]):
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_uniq(l):
return sorted(set(l), key=l.index)
if not "Use Florence-2-SD3-Long-Captioner" in algo:
return input_tags
tag_list = list_uniq(to_list(input_tags) + to_list(fl_run_example(image) + ", "))
tag_list.remove("")
return ", ".join(tag_list)