testvp / tagger /tagger.py
John6666's picture
Upload 24 files
76dc483 verified
raw
history blame
19.2 kB
import spaces
from PIL import Image
import torch
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
from pathlib import Path
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
WD_MODEL_NAME = WD_MODEL_NAMES[0]
device = "cuda" if torch.cuda.is_available() else "cpu"
default_device = device
try:
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True).to(default_device).eval()
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
except Exception as e:
print(e)
wd_model = wd_processor = None
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
"sfw": "safe",
"general": "safe",
"sensitive": "sensitive",
"questionable": "nsfw",
"explicit": "explicit, nsfw",
}
DANBOORU_TO_E621_RATING_MAP = {
"sfw": "rating_safe",
"general": "rating_safe",
"safe": "rating_safe",
"sensitive": "rating_safe",
"nsfw": "rating_explicit",
"explicit, nsfw": "rating_explicit",
"explicit": "rating_explicit",
"rating:safe": "rating_safe",
"rating:general": "rating_safe",
"rating:sensitive": "rating_safe",
"rating:questionable, nsfw": "rating_explicit",
"rating:explicit, nsfw": "rating_explicit",
}
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def replace_underline(x: str):
return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def load_dict_from_csv(filename):
dict = {}
if not Path(filename).exists():
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
else: return dict
try:
with open(filename, 'r', encoding="utf-8") as f:
lines = f.readlines()
except Exception:
print(f"Failed to open dictionary file: {filename}")
return dict
for line in lines:
parts = line.strip().split(',')
dict[parts[0]] = parts[1]
return dict
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
def character_list_to_series_list(character_list):
output_series_tag = []
series_tag = ""
series_dict = anime_series_dict
for tag in character_list:
series_tag = series_dict.get(tag, "")
if tag.endswith(")"):
tags = tag.split("(")
character_tag = "(".join(tags[:-1])
if character_tag.endswith(" "):
character_tag = character_tag[:-1]
series_tag = tags[-1].replace(")", "")
if series_tag:
output_series_tag.append(series_tag)
return output_series_tag
def select_random_character(series: str, character: str):
from random import seed, randrange
seed()
character_list = list(anime_series_dict.keys())
character = character_list[randrange(len(character_list) - 1)]
series = anime_series_dict.get(character.split(",")[0].strip(), "")
return series, character
def danbooru_to_e621(dtag, e621_dict):
def d_to_e(match, e621_dict):
dtag = match.group(0)
etag = e621_dict.get(replace_underline(dtag), "")
if etag:
return etag
else:
return dtag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
return tag
danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
if prompt_type == "danbooru": return input_prompt
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
rating_tags: list[str] = []
e621_dict = danbooru_to_e621_dict
for tag in tags:
tag = replace_underline(tag)
tag = danbooru_to_e621(tag, e621_dict)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
else:
other_tags.append(tag)
rating_tags = sorted(set(rating_tags), key=rating_tags.index)
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_prompt = ", ".join(people_tags + other_tags + rating_tags)
return output_prompt
from translatepy import Translator
translator = Translator()
def translate_prompt_old(prompt: str = ""):
def translate_to_english(input: str):
try:
output = str(translator.translate(input, 'English'))
except Exception as e:
output = input
print(e)
return output
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_english(p) if is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def translate_prompt(input: str):
try:
output = str(translator.translate(input, 'English'))
except Exception as e:
output = input
print(e)
return output
def translate_prompt_to_ja(prompt: str = ""):
def translate_to_japanese(input: str):
try:
output = str(translator.translate(input, 'Japanese'))
except Exception as e:
output = input
print(e)
return output
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_japanese(p) if not is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def tags_to_ja(itag, dict):
def t_to_j(match, dict):
tag = match.group(0)
ja = dict.get(replace_underline(tag), "")
if ja:
return ja
else:
return tag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
return tag
def convert_tags_to_ja(input_prompt: str = ""):
tags = input_prompt.split(",") if input_prompt else []
out_tags = []
tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
dict = tags_to_ja_dict
for tag in tags:
tag = replace_underline(tag)
tag = tags_to_ja(tag, dict)
out_tags.append(tag)
return ", ".join(out_tags)
enable_auto_recom_prompt = True
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
if type == "Auto":
enable_auto_recom_prompt = True
else:
enable_auto_recom_prompt = False
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
def load_model_prompt_dict():
import json
dict = {}
path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
try:
with open('model_dict.json', encoding='utf-8') as f:
dict = json.load(f)
except Exception:
pass
return dict
model_prompt_dict = load_model_prompt_dict()
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
ps = []
nps = []
if model_name in model_prompt_dict.keys():
ps = to_list(model_prompt_dict[model_name]["prompt"])
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
else:
ps = default_ps
nps = default_nps
prompts = prompts + ps
neg_prompts = neg_prompts + nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
tag_group_dict = load_dict_from_csv('tag_group.csv')
def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
def is_dressed(tag):
import re
p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
return p.search(tag)
def is_background(tag):
import re
p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
return p.search(tag)
un_tags = ['solo']
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
keep_group_dict = {
"body": ['groups', 'body_parts'],
"dress": ['groups', 'body_parts', 'attire'],
"all": group_list,
}
def is_necessary(tag, keep_tags, group_dict):
if keep_tags == "all":
return True
elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
return False
elif keep_tags == "body" and is_dressed(tag):
return False
elif is_background(tag):
return False
else:
return True
if keep_tags == "all": return input_prompt
keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
explicit_group = list(set(group_list) ^ set(keep_group))
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
group_dict = tag_group_dict
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif is_necessary(tag, keep_tags, group_dict):
other_tags.append(tag)
output_prompt = ", ".join(people_tags + other_tags)
return output_prompt
def sort_taglist(tags: list[str]):
if not tags: return []
character_tags: list[str] = []
series_tags: list[str] = []
people_tags: list[str] = []
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
group_tags = {}
other_tags: list[str] = []
rating_tags: list[str] = []
group_dict = tag_group_dict
group_set = set(group_dict.keys())
character_set = set(anime_series_dict.keys())
series_set = set(anime_series_dict.values())
rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in rating_set:
rating_tags.append(tag)
elif tag in group_set:
elem = group_dict[tag]
group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
elif tag in character_set:
character_tags.append(tag)
elif tag in series_set:
series_tags.append(tag)
else:
other_tags.append(tag)
output_group_tags: list[str] = []
for k in group_list:
output_group_tags.extend(group_tags.get(k, []))
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
return output_tags
def sort_tags(tags: str):
if not tags: return ""
taglist: list[str] = []
for tag in tags.split(","):
taglist.append(tag.strip())
taglist = list(filter(lambda x: x != "", taglist))
return ", ".join(sort_taglist(taglist))
def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
}
rating = {}
character = {}
general = {}
for k, v in results.items():
if k.startswith("rating:"):
rating[k.replace("rating:", "")] = v
continue
elif k.startswith("character:"):
character[k.replace("character:", "")] = v
continue
general[k] = v
character = {k: v for k, v in character.items() if v >= character_threshold}
general = {k: v for k, v in general.items() if v >= general_threshold}
return rating, character, general
def gen_prompt(rating: list[str], character: list[str], general: list[str]):
people_tags: list[str] = []
other_tags: list[str] = []
rating_tag = RATING_MAP[rating[0]]
for tag in general:
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_tags.append(tag)
all_tags = people_tags + other_tags
return ", ".join(all_tags)
@spaces.GPU(duration=30)
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
inputs = wd_processor.preprocess(image, return_tensors="pt")
outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
if device != default_device: wd_model.to(device=device)
results = {
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
}
if device != default_device: wd_model.to(device=default_device)
# rating, character, general
rating, character, general = postprocess_results(
results, general_threshold, character_threshold
)
prompt = gen_prompt(
list(rating.keys()), list(character.keys()), list(general.keys())
)
output_series_tag = ""
output_series_list = character_list_to_series_list(character.keys())
if output_series_list:
output_series_tag = output_series_list[0]
else:
output_series_tag = ""
return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
if not "Use WD Tagger" in algo and len(algo) != 0:
return input_series, input_character, input_tags, gr.update(interactive=True)
return predict_tags(image, general_threshold, character_threshold)
def compose_prompt_to_copy(character: str, series: str, general: str):
characters = character.split(",") if character else []
serieses = series.split(",") if series else []
generals = general.split(",") if general else []
tags = characters + serieses + generals
cprompt = ",".join(tags) if tags else ""
return cprompt