|
import time
|
|
import torch
|
|
from typing import Callable
|
|
from pathlib import Path
|
|
|
|
from dartrs.v2 import (
|
|
V2Model,
|
|
MixtralModel,
|
|
MistralModel,
|
|
compose_prompt,
|
|
LengthTag,
|
|
AspectRatioTag,
|
|
RatingTag,
|
|
IdentityTag,
|
|
)
|
|
from dartrs.dartrs import DartTokenizer
|
|
from dartrs.utils import get_generation_config
|
|
|
|
|
|
import gradio as gr
|
|
from gradio.components import Component
|
|
|
|
|
|
try:
|
|
from output import UpsamplingOutput
|
|
except:
|
|
from .output import UpsamplingOutput
|
|
|
|
|
|
V2_ALL_MODELS = {
|
|
"dart-v2-moe-sft": {
|
|
"repo": "p1atdev/dart-v2-moe-sft",
|
|
"type": "sft",
|
|
"class": MixtralModel,
|
|
},
|
|
"dart-v2-sft": {
|
|
"repo": "p1atdev/dart-v2-sft",
|
|
"type": "sft",
|
|
"class": MistralModel,
|
|
},
|
|
}
|
|
|
|
|
|
def prepare_models(model_config: dict):
|
|
model_name = model_config["repo"]
|
|
tokenizer = DartTokenizer.from_pretrained(model_name)
|
|
model = model_config["class"].from_pretrained(model_name)
|
|
|
|
return {
|
|
"tokenizer": tokenizer,
|
|
"model": model,
|
|
}
|
|
|
|
|
|
def normalize_tags(tokenizer: DartTokenizer, tags: str):
|
|
"""Just remove unk tokens."""
|
|
return ", ".join([tag for tag in tokenizer.tokenize(tags) if tag != "<|unk|>"])
|
|
|
|
|
|
@torch.no_grad()
|
|
def generate_tags(
|
|
model: V2Model,
|
|
tokenizer: DartTokenizer,
|
|
prompt: str,
|
|
ban_token_ids: list[int],
|
|
):
|
|
output = model.generate(
|
|
get_generation_config(
|
|
prompt,
|
|
tokenizer=tokenizer,
|
|
temperature=1,
|
|
top_p=0.9,
|
|
top_k=100,
|
|
max_new_tokens=256,
|
|
ban_token_ids=ban_token_ids,
|
|
),
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
|
return (
|
|
[f"1{noun}"]
|
|
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
|
|
+ [f"{maximum+1}+{noun}s"]
|
|
)
|
|
|
|
|
|
PEOPLE_TAGS = (
|
|
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
|
|
)
|
|
|
|
|
|
def gen_prompt_text(output: UpsamplingOutput):
|
|
|
|
people_tags = []
|
|
other_general_tags = []
|
|
|
|
for tag in output.general_tags.split(","):
|
|
tag = tag.strip()
|
|
if tag in PEOPLE_TAGS:
|
|
people_tags.append(tag)
|
|
else:
|
|
other_general_tags.append(tag)
|
|
|
|
return ", ".join(
|
|
[
|
|
part.strip()
|
|
for part in [
|
|
*people_tags,
|
|
output.character_tags,
|
|
output.copyright_tags,
|
|
*other_general_tags,
|
|
output.upsampled_tags,
|
|
output.rating_tag,
|
|
]
|
|
if part.strip() != ""
|
|
]
|
|
)
|
|
|
|
|
|
def elapsed_time_format(elapsed_time: float) -> str:
|
|
return f"Elapsed: {elapsed_time:.2f} seconds"
|
|
|
|
|
|
def parse_upsampling_output(
|
|
upsampler: Callable[..., UpsamplingOutput],
|
|
):
|
|
def _parse_upsampling_output(*args) -> tuple[str, str, dict]:
|
|
output = upsampler(*args)
|
|
|
|
return (
|
|
gen_prompt_text(output),
|
|
elapsed_time_format(output.elapsed_time),
|
|
gr.update(interactive=True),
|
|
gr.update(interactive=True),
|
|
)
|
|
|
|
return _parse_upsampling_output
|
|
|
|
|
|
class V2UI:
|
|
model_name: str | None = None
|
|
model: V2Model
|
|
tokenizer: DartTokenizer
|
|
|
|
input_components: list[Component] = []
|
|
generate_btn: gr.Button
|
|
|
|
def on_generate(
|
|
self,
|
|
model_name: str,
|
|
copyright_tags: str,
|
|
character_tags: str,
|
|
general_tags: str,
|
|
rating_tag: RatingTag,
|
|
aspect_ratio_tag: AspectRatioTag,
|
|
length_tag: LengthTag,
|
|
identity_tag: IdentityTag,
|
|
ban_tags: str,
|
|
*args,
|
|
) -> UpsamplingOutput:
|
|
if self.model_name is None or self.model_name != model_name:
|
|
models = prepare_models(V2_ALL_MODELS[model_name])
|
|
self.model = models["model"]
|
|
self.tokenizer = models["tokenizer"]
|
|
self.model_name = model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ban_token_ids = self.tokenizer.encode(ban_tags.strip())
|
|
|
|
prompt = compose_prompt(
|
|
prompt=general_tags,
|
|
copyright=copyright_tags,
|
|
character=character_tags,
|
|
rating=rating_tag,
|
|
aspect_ratio=aspect_ratio_tag,
|
|
length=length_tag,
|
|
identity=identity_tag,
|
|
)
|
|
|
|
start = time.time()
|
|
upsampled_tags = generate_tags(
|
|
self.model,
|
|
self.tokenizer,
|
|
prompt,
|
|
ban_token_ids,
|
|
)
|
|
elapsed_time = time.time() - start
|
|
|
|
return UpsamplingOutput(
|
|
upsampled_tags=upsampled_tags,
|
|
copyright_tags=copyright_tags,
|
|
character_tags=character_tags,
|
|
general_tags=general_tags,
|
|
rating_tag=rating_tag,
|
|
aspect_ratio_tag=aspect_ratio_tag,
|
|
length_tag=length_tag,
|
|
identity_tag=identity_tag,
|
|
elapsed_time=elapsed_time,
|
|
)
|
|
|
|
|
|
def parse_upsampling_output_simple(upsampler: UpsamplingOutput):
|
|
return gen_prompt_text(upsampler)
|
|
|
|
|
|
v2 = V2UI()
|
|
|
|
|
|
def v2_upsampling_prompt(model: str = "dart-v2-moe-sft", copyright: str = "", character: str = "",
|
|
general_tags: str = "", rating: str = "nsfw", aspect_ratio: str = "square",
|
|
length: str = "very_long", identity: str = "lax", ban_tags: str = "censored"):
|
|
raw_prompt = parse_upsampling_output_simple(v2.on_generate(model, copyright, character, general_tags,
|
|
rating, aspect_ratio, length, identity, ban_tags))
|
|
return raw_prompt
|
|
|
|
|
|
def load_dict_from_csv(filename):
|
|
dict = {}
|
|
if not Path(filename).exists():
|
|
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
|
|
else: return dict
|
|
try:
|
|
with open(filename, 'r', encoding="utf-8") as f:
|
|
lines = f.readlines()
|
|
except Exception:
|
|
print(f"Failed to open dictionary file: {filename}")
|
|
return dict
|
|
for line in lines:
|
|
parts = line.strip().split(',')
|
|
dict[parts[0]] = parts[1]
|
|
return dict
|
|
|
|
|
|
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
|
|
|
|
|
|
def select_random_character(series: str, character: str):
|
|
from random import seed, randrange
|
|
seed()
|
|
character_list = list(anime_series_dict.keys())
|
|
character = character_list[randrange(len(character_list) - 1)]
|
|
series = anime_series_dict.get(character.split(",")[0].strip(), "")
|
|
return series, character
|
|
|
|
|
|
def v2_random_prompt(general_tags: str = "", copyright: str = "", character: str = "", rating: str = "nsfw",
|
|
aspect_ratio: str = "square", length: str = "very_long", identity: str = "lax",
|
|
ban_tags: str = "censored", model: str = "dart-v2-moe-sft"):
|
|
if copyright == "" and character == "":
|
|
copyright, character = select_random_character("", "")
|
|
raw_prompt = v2_upsampling_prompt(model, copyright, character, general_tags, rating,
|
|
aspect_ratio, length, identity, ban_tags)
|
|
return raw_prompt, copyright, character |