Upload app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
|
5 |
# DiffuseCraft
|
6 |
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
|
7 |
-
get_vaes,
|
8 |
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
|
9 |
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
|
10 |
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
@@ -204,7 +204,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
204 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
205 |
guidance_scale, num_inference_steps, model_name,
|
206 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
207 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
208 |
outputs=[result],
|
209 |
queue=True,
|
210 |
show_progress="full",
|
@@ -217,7 +217,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
217 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
218 |
guidance_scale, num_inference_steps, model_name,
|
219 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
220 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
221 |
outputs=[result],
|
222 |
queue=False,
|
223 |
show_api=True,
|
@@ -240,7 +240,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
240 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
241 |
guidance_scale, num_inference_steps, model_name,
|
242 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
243 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type],
|
244 |
outputs=[result],
|
245 |
queue=True,
|
246 |
show_progress="full",
|
@@ -290,7 +290,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
290 |
)
|
291 |
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
|
292 |
|
293 |
-
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
294 |
gr.on(
|
295 |
triggers=[quality_selector.change, style_selector.change],
|
296 |
fn=process_style_prompt,
|
@@ -301,7 +301,7 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
301 |
show_api=False,
|
302 |
)
|
303 |
|
304 |
-
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
|
305 |
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
|
306 |
|
307 |
chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
|
|
|
4 |
|
5 |
# DiffuseCraft
|
6 |
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
|
7 |
+
get_vaes, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
8 |
preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
|
9 |
download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
|
10 |
get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
|
|
204 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
205 |
guidance_scale, num_inference_steps, model_name,
|
206 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
207 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
|
208 |
outputs=[result],
|
209 |
queue=True,
|
210 |
show_progress="full",
|
|
|
217 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
218 |
guidance_scale, num_inference_steps, model_name,
|
219 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
220 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
|
221 |
outputs=[result],
|
222 |
queue=False,
|
223 |
show_api=True,
|
|
|
240 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
241 |
guidance_scale, num_inference_steps, model_name,
|
242 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
243 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
|
244 |
outputs=[result],
|
245 |
queue=True,
|
246 |
show_progress="full",
|
|
|
290 |
)
|
291 |
lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)
|
292 |
|
293 |
+
#recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
294 |
gr.on(
|
295 |
triggers=[quality_selector.change, style_selector.change],
|
296 |
fn=process_style_prompt,
|
|
|
301 |
show_api=False,
|
302 |
)
|
303 |
|
304 |
+
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
|
305 |
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
|
306 |
|
307 |
chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
|