Upload dc.py
Browse files
dc.py
CHANGED
@@ -544,8 +544,8 @@ class GuiSD:
|
|
544 |
|
545 |
info_state = "COMPLETE"
|
546 |
|
547 |
-
|
548 |
-
return info_state, img, info_images
|
549 |
|
550 |
def dynamic_gpu_duration(func, duration, *args):
|
551 |
|
@@ -614,8 +614,8 @@ def sd_gen_generate_pipeline(*args):
|
|
614 |
start_time = time.time()
|
615 |
|
616 |
# yield from sd_gen.generate_pipeline(*generation_args)
|
617 |
-
|
618 |
-
return dynamic_gpu_duration(
|
619 |
sd_gen.generate_pipeline,
|
620 |
gpu_duration_arg,
|
621 |
*generation_args,
|
@@ -672,7 +672,7 @@ from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_pat
|
|
672 |
|
673 |
|
674 |
#@spaces.GPU
|
675 |
-
def
|
676 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
677 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
678 |
sampler = "Euler a", vae = None, translate=True, progress=gr.Progress(track_tqdm=True)):
|
@@ -730,6 +730,64 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
730 |
return output_image
|
731 |
|
732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
#@spaces.GPU
|
734 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
735 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
|
|
544 |
|
545 |
info_state = "COMPLETE"
|
546 |
|
547 |
+
yield info_state, img, info_images
|
548 |
+
#return info_state, img, info_images
|
549 |
|
550 |
def dynamic_gpu_duration(func, duration, *args):
|
551 |
|
|
|
614 |
start_time = time.time()
|
615 |
|
616 |
# yield from sd_gen.generate_pipeline(*generation_args)
|
617 |
+
yield from dynamic_gpu_duration(
|
618 |
+
#return dynamic_gpu_duration(
|
619 |
sd_gen.generate_pipeline,
|
620 |
gpu_duration_arg,
|
621 |
*generation_args,
|
|
|
672 |
|
673 |
|
674 |
#@spaces.GPU
|
675 |
+
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
676 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
677 |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
678 |
sampler = "Euler a", vae = None, translate=True, progress=gr.Progress(track_tqdm=True)):
|
|
|
730 |
return output_image
|
731 |
|
732 |
|
733 |
+
async def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
734 |
+
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|
735 |
+
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
|
736 |
+
sampler = "Euler a", vae = None, translate=True, progress=gr.Progress(track_tqdm=True)):
|
737 |
+
import PIL
|
738 |
+
import numpy as np
|
739 |
+
MAX_SEED = np.iinfo(np.int32).max
|
740 |
+
|
741 |
+
load_lora_cpu = False
|
742 |
+
verbose_info = False
|
743 |
+
gpu_duration = 59
|
744 |
+
|
745 |
+
images: list[tuple[PIL.Image.Image, str | None]] = []
|
746 |
+
info_state = info_images = ""
|
747 |
+
progress(0, desc="Preparing...")
|
748 |
+
|
749 |
+
if randomize_seed:
|
750 |
+
seed = random.randint(0, MAX_SEED)
|
751 |
+
|
752 |
+
generator = torch.Generator().manual_seed(seed).seed()
|
753 |
+
|
754 |
+
if translate:
|
755 |
+
prompt = translate_to_en(prompt)
|
756 |
+
negative_prompt = translate_to_en(prompt)
|
757 |
+
|
758 |
+
prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name)
|
759 |
+
progress(0.5, desc="Preparing...")
|
760 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt = \
|
761 |
+
set_prompt_loras(prompt, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt)
|
762 |
+
lora1 = get_valid_lora_path(lora1)
|
763 |
+
lora2 = get_valid_lora_path(lora2)
|
764 |
+
lora3 = get_valid_lora_path(lora3)
|
765 |
+
lora4 = get_valid_lora_path(lora4)
|
766 |
+
lora5 = get_valid_lora_path(lora5)
|
767 |
+
progress(1, desc="Preparation completed. Starting inference...")
|
768 |
+
|
769 |
+
progress(0, desc="Loading model...")
|
770 |
+
await sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
|
771 |
+
progress(1, desc="Model loaded.")
|
772 |
+
progress(0, desc="Starting Inference...")
|
773 |
+
info_state, images, info_images = await sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
774 |
+
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
775 |
+
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
776 |
+
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
777 |
+
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
|
778 |
+
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
|
779 |
+
False, True, 1, True, False, False, False, False, "./images", False, False, False, True, 1, 0.55,
|
780 |
+
False, False, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
|
781 |
+
False, "", "", 0.35, True, True, False, 4, 4, 32,
|
782 |
+
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, 0.0,
|
783 |
+
load_lora_cpu, verbose_info, gpu_duration
|
784 |
+
)
|
785 |
+
progress(1, desc="Inference completed.")
|
786 |
+
output_image = images[0][0] if images else None
|
787 |
+
|
788 |
+
return output_image
|
789 |
+
|
790 |
+
|
791 |
#@spaces.GPU
|
792 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
793 |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
|