import os import re import gradio as gr from constants import ( DIFFUSERS_FORMAT_LORAS, CIVITAI_API_KEY, HF_TOKEN, MODEL_TYPE_CLASS, DIRECTORY_LORAS, DIRECTORY_MODELS, DIFFUSECRAFT_CHECKPOINT_NAME, CACHE_HF, STORAGE_ROOT, ) from huggingface_hub import HfApi from huggingface_hub import snapshot_download from diffusers import DiffusionPipeline from huggingface_hub import model_info as model_info_data from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings from stablepy.diffusers_vanilla.utils import checkpoint_model_type from pathlib import PosixPath from unidecode import unidecode import urllib.parse import copy import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry import shutil import subprocess USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' def request_json_data(url): model_version_id = url.split('/')[-1] if "?modelVersionId=" in model_version_id: match = re.search(r'modelVersionId=(\d+)', url) model_version_id = match.group(1) endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}" params = {} headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'} session = requests.Session() retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) session.mount("https://", HTTPAdapter(max_retries=retries)) try: result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) result.raise_for_status() json_data = result.json() return json_data if json_data else None except Exception as e: print(f"Error: {e}") return None class ModelInformation: def __init__(self, json_data): self.model_version_id = json_data.get("id", "") self.model_id = json_data.get("modelId", "") self.download_url = json_data.get("downloadUrl", "") self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}" self.filename_url = next( (v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "")), "" ) self.filename_url = self.filename_url if self.filename_url else "" self.description = json_data.get("description", "") if self.description is None: self.description = "" self.model_name = json_data.get("model", {}).get("name", "") self.model_type = json_data.get("model", {}).get("type", "") self.nsfw = json_data.get("model", {}).get("nsfw", False) self.poi = json_data.get("model", {}).get("poi", False) self.images = [img.get("url", "") for img in json_data.get("images", [])] self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else "" self.original_json = copy.deepcopy(json_data) def retrieve_model_info(url): json_data = request_json_data(url) if not json_data: return None model_descriptor = ModelInformation(json_data) return model_descriptor def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False): url = url.strip() downloaded_file_path = None if "drive.google.com" in url: original_dir = os.getcwd() os.chdir(directory) os.system(f"gdown --fuzzy {url}") os.chdir(original_dir) elif "huggingface.co" in url: url = url.replace("?download=true", "") # url = urllib.parse.quote(url, safe=':/') # fix encoding if "/blob/" in url: url = url.replace("/blob/", "/resolve/") user_header = f'"Authorization: Bearer {hf_token}"' filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1] if hf_token: os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}") else: os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}") downloaded_file_path = os.path.join(directory, filename) elif "civitai.com" in url: if not civitai_api_key: print("\033[91mYou need an API key to download Civitai models.\033[0m") model_profile = retrieve_model_info(url) if ( model_profile is not None and model_profile.download_url and model_profile.filename_url ): url = model_profile.download_url filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url else: if "?" in url: url = url.split("?")[0] filename = "" url_dl = url + f"?token={civitai_api_key}" print(f"Filename: {filename}") param_filename = "" if filename: param_filename = f"-o '{filename}'" aria2_command = ( f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 ' f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"' ) os.system(aria2_command) if param_filename and os.path.exists(os.path.join(directory, filename)): downloaded_file_path = os.path.join(directory, filename) # # PLAN B # # Follow the redirect to get the actual download URL # curl_command = ( # f'curl -L -sI --connect-timeout 5 --max-time 5 ' # f'-H "Content-Type: application/json" ' # f'-H "Authorization: Bearer {civitai_api_key}" "{url}"' # ) # headers = os.popen(curl_command).read() # # Look for the redirected "Location" URL # location_match = re.search(r'location: (.+)', headers, re.IGNORECASE) # if location_match: # redirect_url = location_match.group(1).strip() # # Extract the filename from the redirect URL's "Content-Disposition" # filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url) # if filename_match: # encoded_filename = filename_match.group(1) # # Decode the URL-encoded filename # decoded_filename = urllib.parse.unquote(encoded_filename) # filename = unidecode(decoded_filename) if romanize else decoded_filename # print(f"Filename: {filename}") # aria2_command = ( # f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 ' # f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"' # ) # return_code = os.system(aria2_command) # # if return_code != 0: # # raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}") # downloaded_file_path = os.path.join(directory, filename) # if not os.path.exists(downloaded_file_path): # downloaded_file_path = None # if not downloaded_file_path: # # Old method # if "?" in url: # url = url.split("?")[0] # url = url + f"?token={civitai_api_key}" # os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") else: os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") return downloaded_file_path def get_model_list(directory_path): model_list = [] valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'} for filename in os.listdir(directory_path): if os.path.splitext(filename)[1] in valid_extensions: # name_without_extension = os.path.splitext(filename)[0] file_path = os.path.join(directory_path, filename) # model_list.append((name_without_extension, file_path)) model_list.append(file_path) print('\033[34mFILE: ' + file_path + '\033[0m') return model_list def extract_parameters(input_string): parameters = {} input_string = input_string.replace("\n", "") if "Negative prompt:" not in input_string: if "Steps:" in input_string: input_string = input_string.replace("Steps:", "Negative prompt: Steps:") else: print("Invalid metadata") parameters["prompt"] = input_string return parameters parm = input_string.split("Negative prompt:") parameters["prompt"] = parm[0].strip() if "Steps:" not in parm[1]: print("Steps not detected") parameters["neg_prompt"] = parm[1].strip() return parameters parm = parm[1].split("Steps:") parameters["neg_prompt"] = parm[0].strip() input_string = "Steps:" + parm[1] # Extracting Steps steps_match = re.search(r'Steps: (\d+)', input_string) if steps_match: parameters['Steps'] = int(steps_match.group(1)) # Extracting Size size_match = re.search(r'Size: (\d+x\d+)', input_string) if size_match: parameters['Size'] = size_match.group(1) width, height = map(int, parameters['Size'].split('x')) parameters['width'] = width parameters['height'] = height # Extracting other parameters other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string) for param in other_parameters: parameters[param[0].strip()] = param[1].strip('"') return parameters def get_my_lora(link_url, romanize): l_name = "" for url in [url.strip() for url in link_url.split(',')]: if not os.path.exists(f"./loras/{url.split('/')[-1]}"): l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize) new_lora_model_list = get_model_list(DIRECTORY_LORAS) new_lora_model_list.insert(0, "None") new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS msg_lora = "Downloaded" if l_name: msg_lora += f": {l_name}" print(msg_lora) return gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( choices=new_lora_model_list ), gr.update( value=msg_lora ) def info_html(json_data, title, subtitle): return f"""

{title}

Details

{subtitle}

""" def get_model_type(repo_id: str): api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model default = "SD 1.5" try: if os.path.exists(repo_id): tag = checkpoint_model_type(repo_id) return DIFFUSECRAFT_CHECKPOINT_NAME[tag] else: model = api.model_info(repo_id=repo_id, timeout=5.0) tags = model.tags for tag in tags: if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default) except Exception: return default return default def restart_space(repo_id: str, factory_reboot: bool): api = HfApi(token=os.environ.get("HF_TOKEN")) try: runtime = api.get_space_runtime(repo_id=repo_id) if runtime.stage == "RUNNING": api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot) print(f"Restarting space: {repo_id}") else: print(f"Space {repo_id} is in stage: {runtime.stage}") except Exception as e: print(e) def extract_exif_data(image): if image is None: return "" try: metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment'] for key in metadata_keys: if key in image.info: return image.info[key] return str(image.info) except Exception as e: return f"Error extracting metadata: {str(e)}" def create_mask_now(img, invert): import numpy as np import time time.sleep(0.5) transparent_image = img["layers"][0] # Extract the alpha channel alpha_channel = np.array(transparent_image)[:, :, 3] # Create a binary mask by thresholding the alpha channel binary_mask = alpha_channel > 1 if invert: print("Invert") # Invert the binary mask so that the drawn shape is white and the rest is black binary_mask = np.invert(binary_mask) # Convert the binary mask to a 3-channel RGB mask rgb_mask = np.stack((binary_mask,) * 3, axis=-1) # Convert the mask to uint8 rgb_mask = rgb_mask.astype(np.uint8) * 255 return img["background"], rgb_mask def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True): variant = None if token is True and not os.environ.get("HF_TOKEN"): token = None if model_type == "SDXL": info = model_info_data( repo_name, token=token, revision=revision, timeout=5.0, ) filenames = {sibling.rfilename for sibling in info.siblings} model_filenames, variant_filenames = variant_compatible_siblings( filenames, variant="fp16" ) if len(variant_filenames): variant = "fp16" if model_type == "FLUX": cached_folder = snapshot_download( repo_id=repo_name, allow_patterns="transformer/*" ) else: cached_folder = DiffusionPipeline.download( pretrained_model_name=repo_name, force_download=False, token=token, revision=revision, # mirror="https://hf-mirror.com", variant=variant, use_safetensors=True, trust_remote_code=False, timeout=5.0, ) if isinstance(cached_folder, PosixPath): cached_folder = cached_folder.as_posix() # Task model # from huggingface_hub import hf_hub_download # hf_hub_download( # task_model, # filename="diffusion_pytorch_model.safetensors", # fix fp16 variant # ) return cached_folder def get_folder_size_gb(folder_path): result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True) total_size_kb = int(result.stdout.split()[0]) total_size_gb = total_size_kb / (1024 ** 2) return total_size_gb def get_used_storage_gb(): try: used_gb = get_folder_size_gb(STORAGE_ROOT) print(f"Used Storage: {used_gb:.2f} GB") except Exception as e: used_gb = 999 print(f"Error while retrieving the used storage: {e}.") return used_gb def delete_model(removal_candidate): print(f"Removing: {removal_candidate}") if os.path.exists(removal_candidate): os.remove(removal_candidate) else: diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}" if os.path.isdir(diffusers_model): shutil.rmtree(diffusers_model) def progress_step_bar(step, total): # Calculate the percentage for the progress bar width percentage = min(100, ((step / total) * 100)) return f"""
{int(percentage)}%
""" def html_template_message(msg): return f"""
{msg}
""" def escape_html(text): """Escapes HTML special characters in the input text.""" return text.replace("<", "<").replace(">", ">").replace("\n", "
")