text2tag-llm / genimage.py
John6666's picture
Upload genimage.py
66a1189 verified
raw
history blame
2.71 kB
import spaces
def load_pipeline():
from diffusers import AutoPipelineForText2Image
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = AutoPipelineForText2Image.from_pretrained(
"John6666/rae-diffusion-xl-v2-sdxl-spo-pcm",
#custom_pipeline="lpw_stable_diffusion_xl",
custom_pipeline="nyanko7/sdxl_smoothed_energy_guidance",
torch_dtype=torch.float16,
)
pipe.to(device)
return pipe
def save_image(image, metadata, output_dir):
import os
import uuid
import json
from PIL import PngImagePlugin
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
pipe = load_pipeline()
@spaces.GPU
def generate_image(prompt, neg_prompt):
metadata = {
"prompt": prompt + ", anime, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": neg_prompt + ", bad hands, bad feet, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast",
"resolution": f"{1024} x {1024}",
"guidance_scale": 7.0,
"num_inference_steps": 28,
"sampler": "Euler",
}
try:
images = pipe(
prompt=prompt + ", anime, masterpiece, best quality, very aesthetic, absurdres",
negative_prompt=neg_prompt + ", bad hands, bad feet, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast",
width=1024,
height=1024,
guidance_scale=7.0, seg_scale=3.0, seg_applied_layers=["mid"],
num_inference_steps=28,
output_type="pil",
#clip_skip=1,
).images
if images:
image_paths = [
save_image(image, metadata, "./outputs")
for image in images
]
return image_paths
except Exception as e:
print(e)
return []