Spaces:
Running
on
Zero
Running
on
Zero
Delete tagger.py
Browse files
tagger.py
DELETED
@@ -1,549 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
import torch
|
3 |
-
import gradio as gr
|
4 |
-
import spaces
|
5 |
-
from transformers import (
|
6 |
-
AutoImageProcessor,
|
7 |
-
AutoModelForImageClassification,
|
8 |
-
)
|
9 |
-
from pathlib import Path
|
10 |
-
|
11 |
-
|
12 |
-
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
|
13 |
-
WD_MODEL_NAME = WD_MODEL_NAMES[0]
|
14 |
-
|
15 |
-
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
|
16 |
-
wd_model.to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
|
18 |
-
|
19 |
-
|
20 |
-
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
21 |
-
return (
|
22 |
-
[f"1{noun}"]
|
23 |
-
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
|
24 |
-
+ [f"{maximum+1}+{noun}s"]
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
PEOPLE_TAGS = (
|
29 |
-
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
|
30 |
-
)
|
31 |
-
|
32 |
-
|
33 |
-
RATING_MAP = {
|
34 |
-
"sfw": "safe",
|
35 |
-
"general": "safe",
|
36 |
-
"sensitive": "sensitive",
|
37 |
-
"questionable": "nsfw",
|
38 |
-
"explicit": "explicit, nsfw",
|
39 |
-
}
|
40 |
-
DANBOORU_TO_E621_RATING_MAP = {
|
41 |
-
"sfw": "rating_safe",
|
42 |
-
"general": "rating_safe",
|
43 |
-
"safe": "rating_safe",
|
44 |
-
"sensitive": "rating_safe",
|
45 |
-
"nsfw": "rating_explicit",
|
46 |
-
"explicit, nsfw": "rating_explicit",
|
47 |
-
"explicit": "rating_explicit",
|
48 |
-
"rating:safe": "rating_safe",
|
49 |
-
"rating:general": "rating_safe",
|
50 |
-
"rating:sensitive": "rating_safe",
|
51 |
-
"rating:questionable, nsfw": "rating_explicit",
|
52 |
-
"rating:explicit, nsfw": "rating_explicit",
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
|
57 |
-
kaomojis = [
|
58 |
-
"0_0",
|
59 |
-
"(o)_(o)",
|
60 |
-
"+_+",
|
61 |
-
"+_-",
|
62 |
-
"._.",
|
63 |
-
"<o>_<o>",
|
64 |
-
"<|>_<|>",
|
65 |
-
"=_=",
|
66 |
-
">_<",
|
67 |
-
"3_3",
|
68 |
-
"6_9",
|
69 |
-
">_o",
|
70 |
-
"@_@",
|
71 |
-
"^_^",
|
72 |
-
"o_o",
|
73 |
-
"u_u",
|
74 |
-
"x_x",
|
75 |
-
"|_|",
|
76 |
-
"||_||",
|
77 |
-
]
|
78 |
-
|
79 |
-
|
80 |
-
def replace_underline(x: str):
|
81 |
-
return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
|
82 |
-
|
83 |
-
|
84 |
-
def to_list(s):
|
85 |
-
return [x.strip() for x in s.split(",") if not s == ""]
|
86 |
-
|
87 |
-
|
88 |
-
def list_sub(a, b):
|
89 |
-
return [e for e in a if e not in b]
|
90 |
-
|
91 |
-
|
92 |
-
def list_uniq(l):
|
93 |
-
return sorted(set(l), key=l.index)
|
94 |
-
|
95 |
-
|
96 |
-
def load_dict_from_csv(filename):
|
97 |
-
dict = {}
|
98 |
-
if not Path(filename).exists():
|
99 |
-
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
|
100 |
-
else: return dict
|
101 |
-
try:
|
102 |
-
with open(filename, 'r', encoding="utf-8") as f:
|
103 |
-
lines = f.readlines()
|
104 |
-
except Exception:
|
105 |
-
print(f"Failed to open dictionary file: {filename}")
|
106 |
-
return dict
|
107 |
-
for line in lines:
|
108 |
-
parts = line.strip().split(',')
|
109 |
-
dict[parts[0]] = parts[1]
|
110 |
-
return dict
|
111 |
-
|
112 |
-
|
113 |
-
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
|
114 |
-
|
115 |
-
|
116 |
-
def character_list_to_series_list(character_list):
|
117 |
-
output_series_tag = []
|
118 |
-
series_tag = ""
|
119 |
-
series_dict = anime_series_dict
|
120 |
-
for tag in character_list:
|
121 |
-
series_tag = series_dict.get(tag, "")
|
122 |
-
if tag.endswith(")"):
|
123 |
-
tags = tag.split("(")
|
124 |
-
character_tag = "(".join(tags[:-1])
|
125 |
-
if character_tag.endswith(" "):
|
126 |
-
character_tag = character_tag[:-1]
|
127 |
-
series_tag = tags[-1].replace(")", "")
|
128 |
-
|
129 |
-
if series_tag:
|
130 |
-
output_series_tag.append(series_tag)
|
131 |
-
|
132 |
-
return output_series_tag
|
133 |
-
|
134 |
-
|
135 |
-
def select_random_character(series: str, character: str):
|
136 |
-
from random import seed, randrange
|
137 |
-
seed()
|
138 |
-
character_list = list(anime_series_dict.keys())
|
139 |
-
character = character_list[randrange(len(character_list) - 1)]
|
140 |
-
series = anime_series_dict.get(character.split(",")[0].strip(), "")
|
141 |
-
return series, character
|
142 |
-
|
143 |
-
|
144 |
-
def danbooru_to_e621(dtag, e621_dict):
|
145 |
-
def d_to_e(match, e621_dict):
|
146 |
-
dtag = match.group(0)
|
147 |
-
etag = e621_dict.get(replace_underline(dtag), "")
|
148 |
-
if etag:
|
149 |
-
return etag
|
150 |
-
else:
|
151 |
-
return dtag
|
152 |
-
|
153 |
-
import re
|
154 |
-
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
|
155 |
-
return tag
|
156 |
-
|
157 |
-
|
158 |
-
danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
|
159 |
-
|
160 |
-
|
161 |
-
def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
|
162 |
-
if prompt_type == "danbooru": return input_prompt
|
163 |
-
tags = input_prompt.split(",") if input_prompt else []
|
164 |
-
people_tags: list[str] = []
|
165 |
-
other_tags: list[str] = []
|
166 |
-
rating_tags: list[str] = []
|
167 |
-
|
168 |
-
e621_dict = danbooru_to_e621_dict
|
169 |
-
for tag in tags:
|
170 |
-
tag = replace_underline(tag)
|
171 |
-
tag = danbooru_to_e621(tag, e621_dict)
|
172 |
-
if tag in PEOPLE_TAGS:
|
173 |
-
people_tags.append(tag)
|
174 |
-
elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
|
175 |
-
rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
|
176 |
-
else:
|
177 |
-
other_tags.append(tag)
|
178 |
-
|
179 |
-
rating_tags = sorted(set(rating_tags), key=rating_tags.index)
|
180 |
-
rating_tags = [rating_tags[0]] if rating_tags else []
|
181 |
-
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
|
182 |
-
|
183 |
-
output_prompt = ", ".join(people_tags + other_tags + rating_tags)
|
184 |
-
|
185 |
-
return output_prompt
|
186 |
-
|
187 |
-
|
188 |
-
def translate_prompt(prompt: str = ""):
|
189 |
-
def translate_to_english(prompt):
|
190 |
-
import httpcore
|
191 |
-
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
|
192 |
-
from googletrans import Translator
|
193 |
-
translator = Translator()
|
194 |
-
try:
|
195 |
-
translated_prompt = translator.translate(prompt, src='auto', dest='en').text
|
196 |
-
return translated_prompt
|
197 |
-
except Exception as e:
|
198 |
-
print(e)
|
199 |
-
return prompt
|
200 |
-
|
201 |
-
def is_japanese(s):
|
202 |
-
import unicodedata
|
203 |
-
for ch in s:
|
204 |
-
name = unicodedata.name(ch, "")
|
205 |
-
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
|
206 |
-
return True
|
207 |
-
return False
|
208 |
-
|
209 |
-
def to_list(s):
|
210 |
-
return [x.strip() for x in s.split(",")]
|
211 |
-
|
212 |
-
prompts = to_list(prompt)
|
213 |
-
outputs = []
|
214 |
-
for p in prompts:
|
215 |
-
p = translate_to_english(p) if is_japanese(p) else p
|
216 |
-
outputs.append(p)
|
217 |
-
|
218 |
-
return ", ".join(outputs)
|
219 |
-
|
220 |
-
|
221 |
-
def translate_prompt_to_ja(prompt: str = ""):
|
222 |
-
def translate_to_japanese(prompt):
|
223 |
-
import httpcore
|
224 |
-
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
|
225 |
-
from googletrans import Translator
|
226 |
-
translator = Translator()
|
227 |
-
try:
|
228 |
-
translated_prompt = translator.translate(prompt, src='en', dest='ja').text
|
229 |
-
return translated_prompt
|
230 |
-
except Exception as e:
|
231 |
-
print(e)
|
232 |
-
return prompt
|
233 |
-
|
234 |
-
def is_japanese(s):
|
235 |
-
import unicodedata
|
236 |
-
for ch in s:
|
237 |
-
name = unicodedata.name(ch, "")
|
238 |
-
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
|
239 |
-
return True
|
240 |
-
return False
|
241 |
-
|
242 |
-
def to_list(s):
|
243 |
-
return [x.strip() for x in s.split(",")]
|
244 |
-
|
245 |
-
prompts = to_list(prompt)
|
246 |
-
outputs = []
|
247 |
-
for p in prompts:
|
248 |
-
p = translate_to_japanese(p) if not is_japanese(p) else p
|
249 |
-
outputs.append(p)
|
250 |
-
|
251 |
-
return ", ".join(outputs)
|
252 |
-
|
253 |
-
|
254 |
-
def tags_to_ja(itag, dict):
|
255 |
-
def t_to_j(match, dict):
|
256 |
-
tag = match.group(0)
|
257 |
-
ja = dict.get(replace_underline(tag), "")
|
258 |
-
if ja:
|
259 |
-
return ja
|
260 |
-
else:
|
261 |
-
return tag
|
262 |
-
|
263 |
-
import re
|
264 |
-
tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
|
265 |
-
|
266 |
-
return tag
|
267 |
-
|
268 |
-
|
269 |
-
def convert_tags_to_ja(input_prompt: str = ""):
|
270 |
-
tags = input_prompt.split(",") if input_prompt else []
|
271 |
-
out_tags = []
|
272 |
-
|
273 |
-
tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
|
274 |
-
dict = tags_to_ja_dict
|
275 |
-
for tag in tags:
|
276 |
-
tag = replace_underline(tag)
|
277 |
-
tag = tags_to_ja(tag, dict)
|
278 |
-
out_tags.append(tag)
|
279 |
-
|
280 |
-
return ", ".join(out_tags)
|
281 |
-
|
282 |
-
|
283 |
-
enable_auto_recom_prompt = True
|
284 |
-
|
285 |
-
|
286 |
-
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
|
287 |
-
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
288 |
-
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
289 |
-
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
|
290 |
-
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
|
291 |
-
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
|
292 |
-
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
293 |
-
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
294 |
-
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
|
295 |
-
global enable_auto_recom_prompt
|
296 |
-
prompts = to_list(prompt)
|
297 |
-
neg_prompts = to_list(neg_prompt)
|
298 |
-
|
299 |
-
prompts = list_sub(prompts, animagine_ps + pony_ps)
|
300 |
-
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
|
301 |
-
|
302 |
-
last_empty_p = [""] if not prompts and type != "None" else []
|
303 |
-
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
304 |
-
|
305 |
-
if type == "Auto":
|
306 |
-
enable_auto_recom_prompt = True
|
307 |
-
else:
|
308 |
-
enable_auto_recom_prompt = False
|
309 |
-
if type == "Animagine":
|
310 |
-
prompts = prompts + animagine_ps
|
311 |
-
neg_prompts = neg_prompts + animagine_nps
|
312 |
-
elif type == "Pony":
|
313 |
-
prompts = prompts + pony_ps
|
314 |
-
neg_prompts = neg_prompts + pony_nps
|
315 |
-
|
316 |
-
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
|
317 |
-
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
|
318 |
-
|
319 |
-
return prompt, neg_prompt
|
320 |
-
|
321 |
-
|
322 |
-
def load_model_prompt_dict():
|
323 |
-
import json
|
324 |
-
dict = {}
|
325 |
-
path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
|
326 |
-
try:
|
327 |
-
with open('model_dict.json', encoding='utf-8') as f:
|
328 |
-
dict = json.load(f)
|
329 |
-
except Exception:
|
330 |
-
pass
|
331 |
-
return dict
|
332 |
-
|
333 |
-
|
334 |
-
model_prompt_dict = load_model_prompt_dict()
|
335 |
-
|
336 |
-
|
337 |
-
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
|
338 |
-
if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
|
339 |
-
prompts = to_list(prompt)
|
340 |
-
neg_prompts = to_list(neg_prompt)
|
341 |
-
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
|
342 |
-
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
|
343 |
-
last_empty_p = [""] if not prompts and type != "None" else []
|
344 |
-
last_empty_np = [""] if not neg_prompts and type != "None" else []
|
345 |
-
ps = []
|
346 |
-
nps = []
|
347 |
-
if model_name in model_prompt_dict.keys():
|
348 |
-
ps = to_list(model_prompt_dict[model_name]["prompt"])
|
349 |
-
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
|
350 |
-
else:
|
351 |
-
ps = default_ps
|
352 |
-
nps = default_nps
|
353 |
-
prompts = prompts + ps
|
354 |
-
neg_prompts = neg_prompts + nps
|
355 |
-
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
|
356 |
-
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
|
357 |
-
return prompt, neg_prompt
|
358 |
-
|
359 |
-
|
360 |
-
tag_group_dict = load_dict_from_csv('tag_group.csv')
|
361 |
-
|
362 |
-
|
363 |
-
def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
|
364 |
-
def is_dressed(tag):
|
365 |
-
import re
|
366 |
-
p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
|
367 |
-
return p.search(tag)
|
368 |
-
|
369 |
-
def is_background(tag):
|
370 |
-
import re
|
371 |
-
p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
|
372 |
-
return p.search(tag)
|
373 |
-
|
374 |
-
un_tags = ['solo']
|
375 |
-
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
|
376 |
-
keep_group_dict = {
|
377 |
-
"body": ['groups', 'body_parts'],
|
378 |
-
"dress": ['groups', 'body_parts', 'attire'],
|
379 |
-
"all": group_list,
|
380 |
-
}
|
381 |
-
|
382 |
-
def is_necessary(tag, keep_tags, group_dict):
|
383 |
-
if keep_tags == "all":
|
384 |
-
return True
|
385 |
-
elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
|
386 |
-
return False
|
387 |
-
elif keep_tags == "body" and is_dressed(tag):
|
388 |
-
return False
|
389 |
-
elif is_background(tag):
|
390 |
-
return False
|
391 |
-
else:
|
392 |
-
return True
|
393 |
-
|
394 |
-
if keep_tags == "all": return input_prompt
|
395 |
-
keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
|
396 |
-
explicit_group = list(set(group_list) ^ set(keep_group))
|
397 |
-
|
398 |
-
tags = input_prompt.split(",") if input_prompt else []
|
399 |
-
people_tags: list[str] = []
|
400 |
-
other_tags: list[str] = []
|
401 |
-
|
402 |
-
group_dict = tag_group_dict
|
403 |
-
for tag in tags:
|
404 |
-
tag = replace_underline(tag)
|
405 |
-
if tag in PEOPLE_TAGS:
|
406 |
-
people_tags.append(tag)
|
407 |
-
elif is_necessary(tag, keep_tags, group_dict):
|
408 |
-
other_tags.append(tag)
|
409 |
-
|
410 |
-
output_prompt = ", ".join(people_tags + other_tags)
|
411 |
-
|
412 |
-
return output_prompt
|
413 |
-
|
414 |
-
|
415 |
-
def sort_taglist(tags: list[str]):
|
416 |
-
if not tags: return []
|
417 |
-
character_tags: list[str] = []
|
418 |
-
series_tags: list[str] = []
|
419 |
-
people_tags: list[str] = []
|
420 |
-
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
|
421 |
-
group_tags = {}
|
422 |
-
other_tags: list[str] = []
|
423 |
-
rating_tags: list[str] = []
|
424 |
-
|
425 |
-
group_dict = tag_group_dict
|
426 |
-
group_set = set(group_dict.keys())
|
427 |
-
character_set = set(anime_series_dict.keys())
|
428 |
-
series_set = set(anime_series_dict.values())
|
429 |
-
rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
|
430 |
-
|
431 |
-
for tag in tags:
|
432 |
-
tag = replace_underline(tag)
|
433 |
-
if tag in PEOPLE_TAGS:
|
434 |
-
people_tags.append(tag)
|
435 |
-
elif tag in rating_set:
|
436 |
-
rating_tags.append(tag)
|
437 |
-
elif tag in group_set:
|
438 |
-
elem = group_dict[tag]
|
439 |
-
group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
|
440 |
-
elif tag in character_set:
|
441 |
-
character_tags.append(tag)
|
442 |
-
elif tag in series_set:
|
443 |
-
series_tags.append(tag)
|
444 |
-
else:
|
445 |
-
other_tags.append(tag)
|
446 |
-
|
447 |
-
output_group_tags: list[str] = []
|
448 |
-
for k in group_list:
|
449 |
-
output_group_tags.extend(group_tags.get(k, []))
|
450 |
-
|
451 |
-
rating_tags = [rating_tags[0]] if rating_tags else []
|
452 |
-
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
|
453 |
-
|
454 |
-
output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
|
455 |
-
|
456 |
-
return output_tags
|
457 |
-
|
458 |
-
|
459 |
-
def sort_tags(tags: str):
|
460 |
-
if not tags: return ""
|
461 |
-
taglist: list[str] = []
|
462 |
-
for tag in tags.split(","):
|
463 |
-
taglist.append(tag.strip())
|
464 |
-
taglist = list(filter(lambda x: x != "", taglist))
|
465 |
-
return ", ".join(sort_taglist(taglist))
|
466 |
-
|
467 |
-
|
468 |
-
def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
|
469 |
-
results = {
|
470 |
-
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
|
471 |
-
}
|
472 |
-
|
473 |
-
rating = {}
|
474 |
-
character = {}
|
475 |
-
general = {}
|
476 |
-
|
477 |
-
for k, v in results.items():
|
478 |
-
if k.startswith("rating:"):
|
479 |
-
rating[k.replace("rating:", "")] = v
|
480 |
-
continue
|
481 |
-
elif k.startswith("character:"):
|
482 |
-
character[k.replace("character:", "")] = v
|
483 |
-
continue
|
484 |
-
|
485 |
-
general[k] = v
|
486 |
-
|
487 |
-
character = {k: v for k, v in character.items() if v >= character_threshold}
|
488 |
-
general = {k: v for k, v in general.items() if v >= general_threshold}
|
489 |
-
|
490 |
-
return rating, character, general
|
491 |
-
|
492 |
-
|
493 |
-
def gen_prompt(rating: list[str], character: list[str], general: list[str]):
|
494 |
-
people_tags: list[str] = []
|
495 |
-
other_tags: list[str] = []
|
496 |
-
rating_tag = RATING_MAP[rating[0]]
|
497 |
-
|
498 |
-
for tag in general:
|
499 |
-
if tag in PEOPLE_TAGS:
|
500 |
-
people_tags.append(tag)
|
501 |
-
else:
|
502 |
-
other_tags.append(tag)
|
503 |
-
|
504 |
-
all_tags = people_tags + other_tags
|
505 |
-
|
506 |
-
return ", ".join(all_tags)
|
507 |
-
|
508 |
-
|
509 |
-
@spaces.GPU()
|
510 |
-
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
|
511 |
-
inputs = wd_processor.preprocess(image, return_tensors="pt")
|
512 |
-
|
513 |
-
outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
|
514 |
-
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
|
515 |
-
|
516 |
-
# get probabilities
|
517 |
-
results = {
|
518 |
-
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
|
519 |
-
}
|
520 |
-
# rating, character, general
|
521 |
-
rating, character, general = postprocess_results(
|
522 |
-
results, general_threshold, character_threshold
|
523 |
-
)
|
524 |
-
prompt = gen_prompt(
|
525 |
-
list(rating.keys()), list(character.keys()), list(general.keys())
|
526 |
-
)
|
527 |
-
output_series_tag = ""
|
528 |
-
output_series_list = character_list_to_series_list(character.keys())
|
529 |
-
if output_series_list:
|
530 |
-
output_series_tag = output_series_list[0]
|
531 |
-
else:
|
532 |
-
output_series_tag = ""
|
533 |
-
return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
|
534 |
-
|
535 |
-
|
536 |
-
def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
|
537 |
-
character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
|
538 |
-
if not "Use WD Tagger" in algo and len(algo) != 0:
|
539 |
-
return input_series, input_character, input_tags, gr.update(interactive=True)
|
540 |
-
return predict_tags(image, general_threshold, character_threshold)
|
541 |
-
|
542 |
-
|
543 |
-
def compose_prompt_to_copy(character: str, series: str, general: str):
|
544 |
-
characters = character.split(",") if character else []
|
545 |
-
serieses = series.split(",") if series else []
|
546 |
-
generals = general.split(",") if general else []
|
547 |
-
tags = characters + serieses + generals
|
548 |
-
cprompt = ",".join(tags) if tags else ""
|
549 |
-
return cprompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|