Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
from stablepy import ( | |
Model_Diffusers, | |
SCHEDULE_TYPE_OPTIONS, | |
SCHEDULE_PREDICTION_TYPE_OPTIONS, | |
check_scheduler_compatibility, | |
) | |
from constants import ( | |
PREPROCESSOR_CONTROLNET, | |
TASK_STABLEPY, | |
TASK_MODEL_LIST, | |
UPSCALER_DICT_GUI, | |
UPSCALER_KEYS, | |
PROMPT_W_OPTIONS, | |
WARNING_MSG_VAE, | |
SDXL_TASK, | |
MODEL_TYPE_TASK, | |
POST_PROCESSING_SAMPLER, | |
) | |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES | |
import torch | |
import re | |
from stablepy import ( | |
scheduler_names, | |
IP_ADAPTERS_SD, | |
IP_ADAPTERS_SDXL, | |
) | |
import time | |
from PIL import ImageFile | |
from utils import ( | |
get_model_list, | |
extract_parameters, | |
get_model_type, | |
extract_exif_data, | |
create_mask_now, | |
download_diffuser_repo, | |
get_used_storage_gb, | |
delete_model, | |
progress_step_bar, | |
html_template_message, | |
escape_html, | |
) | |
from datetime import datetime | |
import gradio as gr | |
import logging | |
import diffusers | |
import warnings | |
from stablepy import logger | |
# import urllib.parse | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1" | |
print(os.getenv("SPACES_ZERO_GPU")) | |
## BEGIN MOD | |
import gradio as gr | |
import logging | |
logging.getLogger("diffusers").setLevel(logging.ERROR) | |
import diffusers | |
diffusers.utils.logging.set_verbosity(40) | |
import warnings | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") | |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") | |
from stablepy import logger | |
logger.setLevel(logging.DEBUG) | |
from env import ( | |
HF_TOKEN, HF_READ_TOKEN, # to use only for private repos | |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, | |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO, | |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, | |
DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, | |
DIRECTORY_EMBEDS_SDXL, DIRECTORY_EMBEDS_POSITIVE_SDXL, | |
LOAD_DIFFUSERS_FORMAT_MODEL, DOWNLOAD_MODEL_LIST, DOWNLOAD_LORA_LIST, | |
DOWNLOAD_VAE_LIST, DOWNLOAD_EMBEDS) | |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list, | |
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things) | |
# - **Download Models** | |
download_model = ", ".join(DOWNLOAD_MODEL_LIST) | |
# - **Download VAEs** | |
download_vae = ", ".join(DOWNLOAD_VAE_LIST) | |
# - **Download LoRAs** | |
download_lora = ", ".join(DOWNLOAD_LORA_LIST) | |
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, DIRECTORY_LORAS, True) | |
download_private_repo(HF_VAE_PRIVATE_REPO, DIRECTORY_VAES, False) | |
load_diffusers_format_model = list_uniq(LOAD_DIFFUSERS_FORMAT_MODEL + get_model_id_list()) | |
## END MOD | |
# Download stuffs | |
for url in [url.strip() for url in download_model.split(',')]: | |
if not os.path.exists(f"./models/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_vae.split(',')]: | |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY) | |
for url in [url.strip() for url in download_lora.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) | |
# Download Embeddings | |
for url_embed in DOWNLOAD_EMBEDS: | |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): | |
download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY) | |
# Build list models | |
embed_list = get_model_list(DIRECTORY_EMBEDS) | |
single_file_model_list = get_model_list(DIRECTORY_MODELS) | |
model_list = list_uniq(get_model_id_list() + LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list) | |
## BEGIN MOD | |
lora_model_list = get_lora_model_list() | |
vae_model_list = get_model_list(DIRECTORY_VAES) | |
vae_model_list.insert(0, "BakedVAE") | |
vae_model_list.insert(0, "None") | |
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_SDXL, False) | |
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_POSITIVE_SDXL, False) | |
embed_sdxl_list = get_model_list(DIRECTORY_EMBEDS_SDXL) + get_model_list(DIRECTORY_EMBEDS_POSITIVE_SDXL) | |
def get_embed_list(pipeline_name): | |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list) | |
## END MOD | |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m') | |
## BEGIN MOD | |
class GuiSD: | |
def __init__(self, stream=True): | |
self.model = None | |
self.status_loading = False | |
self.sleep_loading = 4 | |
self.last_load = datetime.now() | |
self.inventory = [] | |
def update_storage_models(self, storage_floor_gb=42, required_inventory_for_purge=3): | |
while get_used_storage_gb() > storage_floor_gb: | |
if len(self.inventory) < required_inventory_for_purge: | |
break | |
removal_candidate = self.inventory.pop(0) | |
delete_model(removal_candidate) | |
def update_inventory(self, model_name): | |
if model_name not in single_file_model_list: | |
self.inventory = [ | |
m for m in self.inventory if m != model_name | |
] + [model_name] | |
print(self.inventory) | |
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)): | |
#progress(0, desc="Start inference...") | |
images, seed, image_list, metadata = model(**pipe_params) | |
#progress(1, desc="Inference completed.") | |
if not isinstance(images, list): images = [images] | |
images = save_images(images, metadata) | |
img = [] | |
for image in images: | |
img.append((image, None)) | |
return img | |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)): | |
self.update_storage_models() | |
# download link model > model_name | |
vae_model = vae_model if vae_model != "None" else None | |
model_type = get_model_type(model_name) | |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16 | |
if not os.path.exists(model_name): | |
_ = download_diffuser_repo( | |
repo_name=model_name, | |
model_type=model_type, | |
revision="main", | |
token=True, | |
) | |
self.update_inventory(model_name) | |
for i in range(68): | |
if not self.status_loading: | |
self.status_loading = True | |
if i > 0: | |
time.sleep(self.sleep_loading) | |
print("Previous model ops...") | |
break | |
time.sleep(0.5) | |
print(f"Waiting queue {i}") | |
yield "Waiting queue" | |
self.status_loading = True | |
yield f"Loading model: {model_name}" | |
if vae_model == "BakedVAE": | |
if not os.path.exists(model_name): | |
vae_model = model_name | |
else: | |
vae_model = None | |
elif vae_model: | |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5" | |
if model_type != vae_type: | |
gr.Warning(WARNING_MSG_VAE) | |
print("Loading model...") | |
try: | |
start_time = time.time() | |
if self.model is None: | |
self.model = Model_Diffusers( | |
base_model_id=model_name, | |
task_name=TASK_STABLEPY[task], | |
vae_model=vae_model, | |
type_model_precision=dtype_model, | |
retain_task_model_in_cache=False, | |
device="cpu", | |
) | |
else: | |
if self.model.base_model_id != model_name: | |
load_now_time = datetime.now() | |
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0) | |
if elapsed_time <= 8: | |
print("Waiting for the previous model's time ops...") | |
time.sleep(8-elapsed_time) | |
self.model.device = torch.device("cpu") | |
self.model.load_pipe( | |
model_name, | |
task_name=TASK_STABLEPY[task], | |
vae_model=vae_model, | |
type_model_precision=dtype_model, | |
retain_task_model_in_cache=False, | |
) | |
end_time = time.time() | |
self.sleep_loading = max(min(int(end_time - start_time), 10), 4) | |
except Exception as e: | |
self.last_load = datetime.now() | |
self.status_loading = False | |
self.sleep_loading = 4 | |
raise e | |
self.last_load = datetime.now() | |
self.status_loading = False | |
yield f"Model loaded: {model_name}" | |
#@spaces.GPU | |
def generate_pipeline( | |
self, | |
prompt, | |
neg_prompt, | |
num_images, | |
steps, | |
cfg, | |
clip_skip, | |
seed, | |
lora1, | |
lora_scale1, | |
lora2, | |
lora_scale2, | |
lora3, | |
lora_scale3, | |
lora4, | |
lora_scale4, | |
lora5, | |
lora_scale5, | |
sampler, | |
schedule_type, | |
schedule_prediction_type, | |
img_height, | |
img_width, | |
model_name, | |
vae_model, | |
task, | |
image_control, | |
preprocessor_name, | |
preprocess_resolution, | |
image_resolution, | |
style_prompt, # list [] | |
style_json_file, | |
image_mask, | |
strength, | |
low_threshold, | |
high_threshold, | |
value_threshold, | |
distance_threshold, | |
controlnet_output_scaling_in_unet, | |
controlnet_start_threshold, | |
controlnet_stop_threshold, | |
textual_inversion, | |
syntax_weights, | |
upscaler_model_path, | |
upscaler_increases_size, | |
esrgan_tile, | |
esrgan_tile_overlap, | |
hires_steps, | |
hires_denoising_strength, | |
hires_sampler, | |
hires_prompt, | |
hires_negative_prompt, | |
hires_before_adetailer, | |
hires_after_adetailer, | |
loop_generation, | |
leave_progress_bar, | |
disable_progress_bar, | |
image_previews, | |
display_images, | |
save_generated_images, | |
filename_pattern, | |
image_storage_location, | |
retain_compel_previous_load, | |
retain_detailfix_model_previous_load, | |
retain_hires_model_previous_load, | |
t2i_adapter_preprocessor, | |
t2i_adapter_conditioning_scale, | |
t2i_adapter_conditioning_factor, | |
xformers_memory_efficient_attention, | |
freeu, | |
generator_in_cpu, | |
adetailer_inpaint_only, | |
adetailer_verbose, | |
adetailer_sampler, | |
adetailer_active_a, | |
prompt_ad_a, | |
negative_prompt_ad_a, | |
strength_ad_a, | |
face_detector_ad_a, | |
person_detector_ad_a, | |
hand_detector_ad_a, | |
mask_dilation_a, | |
mask_blur_a, | |
mask_padding_a, | |
adetailer_active_b, | |
prompt_ad_b, | |
negative_prompt_ad_b, | |
strength_ad_b, | |
face_detector_ad_b, | |
person_detector_ad_b, | |
hand_detector_ad_b, | |
mask_dilation_b, | |
mask_blur_b, | |
mask_padding_b, | |
retain_task_cache_gui, | |
image_ip1, | |
mask_ip1, | |
model_ip1, | |
mode_ip1, | |
scale_ip1, | |
image_ip2, | |
mask_ip2, | |
model_ip2, | |
mode_ip2, | |
scale_ip2, | |
pag_scale, | |
): | |
info_state = html_template_message("Navigating latent space...") | |
yield info_state, gr.update(), gr.update() | |
vae_model = vae_model if vae_model != "None" else None | |
loras_list = [lora1, lora2, lora3, lora4, lora5] | |
vae_msg = f"VAE: {vae_model}" if vae_model else "" | |
msg_lora = "" | |
## BEGIN MOD | |
loras_list = [s if s else "None" for s in loras_list] | |
global lora_model_list | |
lora_model_list = get_lora_model_list() | |
## END MOD | |
print("Config model:", model_name, vae_model, loras_list) | |
task = TASK_STABLEPY[task] | |
params_ip_img = [] | |
params_ip_msk = [] | |
params_ip_model = [] | |
params_ip_mode = [] | |
params_ip_scale = [] | |
all_adapters = [ | |
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), | |
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), | |
] | |
if not hasattr(self.model.pipe, "transformer"): | |
for imgip, mskip, modelip, modeip, scaleip in all_adapters: | |
if imgip: | |
params_ip_img.append(imgip) | |
if mskip: | |
params_ip_msk.append(mskip) | |
params_ip_model.append(modelip) | |
params_ip_mode.append(modeip) | |
params_ip_scale.append(scaleip) | |
concurrency = 5 | |
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False) | |
if task != "txt2img" and not image_control: | |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'") | |
if task == "inpaint" and not image_mask: | |
raise ValueError("No mask image found: Specify one in 'Image Mask'") | |
if upscaler_model_path in UPSCALER_KEYS[:9]: | |
upscaler_model = upscaler_model_path | |
else: | |
directory_upscalers = 'upscalers' | |
os.makedirs(directory_upscalers, exist_ok=True) | |
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path] | |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): | |
download_things(directory_upscalers, url_upscaler, HF_TOKEN) | |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}" | |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) | |
adetailer_params_A = { | |
"face_detector_ad": face_detector_ad_a, | |
"person_detector_ad": person_detector_ad_a, | |
"hand_detector_ad": hand_detector_ad_a, | |
"prompt": prompt_ad_a, | |
"negative_prompt": negative_prompt_ad_a, | |
"strength": strength_ad_a, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_a, | |
"mask_blur": mask_blur_a, | |
"mask_padding": mask_padding_a, | |
"inpaint_only": adetailer_inpaint_only, | |
"sampler": adetailer_sampler, | |
} | |
adetailer_params_B = { | |
"face_detector_ad": face_detector_ad_b, | |
"person_detector_ad": person_detector_ad_b, | |
"hand_detector_ad": hand_detector_ad_b, | |
"prompt": prompt_ad_b, | |
"negative_prompt": negative_prompt_ad_b, | |
"strength": strength_ad_b, | |
# "image_list_task" : None, | |
"mask_dilation": mask_dilation_b, | |
"mask_blur": mask_blur_b, | |
"mask_padding": mask_padding_b, | |
} | |
pipe_params = { | |
"prompt": prompt, | |
"negative_prompt": neg_prompt, | |
"img_height": img_height, | |
"img_width": img_width, | |
"num_images": num_images, | |
"num_steps": steps, | |
"guidance_scale": cfg, | |
"clip_skip": clip_skip, | |
"pag_scale": float(pag_scale), | |
"seed": seed, | |
"image": image_control, | |
"preprocessor_name": preprocessor_name, | |
"preprocess_resolution": preprocess_resolution, | |
"image_resolution": image_resolution, | |
"style_prompt": style_prompt if style_prompt else "", | |
"style_json_file": "", | |
"image_mask": image_mask, # only for Inpaint | |
"strength": strength, # only for Inpaint or ... | |
"low_threshold": low_threshold, | |
"high_threshold": high_threshold, | |
"value_threshold": value_threshold, | |
"distance_threshold": distance_threshold, | |
"lora_A": lora1 if lora1 != "None" else None, | |
"lora_scale_A": lora_scale1, | |
"lora_B": lora2 if lora2 != "None" else None, | |
"lora_scale_B": lora_scale2, | |
"lora_C": lora3 if lora3 != "None" else None, | |
"lora_scale_C": lora_scale3, | |
"lora_D": lora4 if lora4 != "None" else None, | |
"lora_scale_D": lora_scale4, | |
"lora_E": lora5 if lora5 != "None" else None, | |
"lora_scale_E": lora_scale5, | |
## BEGIN MOD | |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [], | |
## END MOD | |
"syntax_weights": syntax_weights, # "Classic" | |
"sampler": sampler, | |
"schedule_type": schedule_type, | |
"schedule_prediction_type": schedule_prediction_type, | |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention, | |
"gui_active": True, | |
"loop_generation": loop_generation, | |
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), | |
"control_guidance_start": float(controlnet_start_threshold), | |
"control_guidance_end": float(controlnet_stop_threshold), | |
"generator_in_cpu": generator_in_cpu, | |
"FreeU": freeu, | |
"adetailer_A": adetailer_active_a, | |
"adetailer_A_params": adetailer_params_A, | |
"adetailer_B": adetailer_active_b, | |
"adetailer_B_params": adetailer_params_B, | |
"leave_progress_bar": leave_progress_bar, | |
"disable_progress_bar": disable_progress_bar, | |
"image_previews": image_previews, | |
"display_images": display_images, | |
"save_generated_images": save_generated_images, | |
"filename_pattern": filename_pattern, | |
"image_storage_location": image_storage_location, | |
"retain_compel_previous_load": retain_compel_previous_load, | |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, | |
"retain_hires_model_previous_load": retain_hires_model_previous_load, | |
"t2i_adapter_preprocessor": t2i_adapter_preprocessor, | |
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), | |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), | |
"upscaler_model_path": upscaler_model, | |
"upscaler_increases_size": upscaler_increases_size, | |
"esrgan_tile": esrgan_tile, | |
"esrgan_tile_overlap": esrgan_tile_overlap, | |
"hires_steps": hires_steps, | |
"hires_denoising_strength": hires_denoising_strength, | |
"hires_prompt": hires_prompt, | |
"hires_negative_prompt": hires_negative_prompt, | |
"hires_sampler": hires_sampler, | |
"hires_before_adetailer": hires_before_adetailer, | |
"hires_after_adetailer": hires_after_adetailer, | |
"ip_adapter_image": params_ip_img, | |
"ip_adapter_mask": params_ip_msk, | |
"ip_adapter_model": params_ip_model, | |
"ip_adapter_mode": params_ip_mode, | |
"ip_adapter_scale": params_ip_scale, | |
} | |
self.model.device = torch.device("cuda:0") | |
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5: | |
self.model.pipe.transformer.to(self.model.device) | |
print("transformer to cuda") | |
#return self.infer_short(self.model, pipe_params), info_state | |
actual_progress = 0 | |
info_images = gr.update() | |
for img, [seed, image_path, metadata] in self.model(**pipe_params): | |
info_state = progress_step_bar(actual_progress, steps) | |
actual_progress += concurrency | |
if image_path: | |
info_images = f"Seeds: {str(seed)}" | |
if vae_msg: | |
info_images = info_images + "<br>" + vae_msg | |
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error: | |
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later." | |
print(msg_ram) | |
msg_lora += f"<br>{msg_ram}" | |
for status, lora in zip(self.model.lora_status, self.model.lora_memory): | |
if status: | |
msg_lora += f"<br>Loaded: {lora}" | |
elif status is not None: | |
msg_lora += f"<br>Error with: {lora}" | |
if msg_lora: | |
info_images += msg_lora | |
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[0]) + "<br>-------<br>" | |
download_links = "<br>".join( | |
[ | |
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>' | |
for i, path in enumerate(image_path) | |
] | |
) | |
if save_generated_images: | |
info_images += f"<br>{download_links}" | |
## BEGIN MOD | |
if not isinstance(img, list): img = [img] | |
img = save_images(img, metadata) | |
img = [(i, None) for i in img] | |
## END MOD | |
info_state = "COMPLETE" | |
yield info_state, img, info_images | |
#return info_state, img, info_images | |
def dynamic_gpu_duration(func, duration, *args): | |
def wrapped_func(): | |
yield from func(*args) | |
return wrapped_func() | |
def dummy_gpu(): | |
return None | |
def sd_gen_generate_pipeline(*args): | |
gpu_duration_arg = int(args[-1]) if args[-1] else 59 | |
verbose_arg = int(args[-2]) | |
load_lora_cpu = args[-3] | |
generation_args = args[:-3] | |
lora_list = [ | |
None if item == "None" or item == "" else item # MOD | |
for item in [args[7], args[9], args[11], args[13], args[15]] | |
] | |
lora_status = [None] * 5 | |
msg_load_lora = "Updating LoRAs in GPU..." | |
if load_lora_cpu: | |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..." | |
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5: | |
yield msg_load_lora, gr.update(), gr.update() | |
# Load lora in CPU | |
if load_lora_cpu: | |
lora_status = sd_gen.model.lora_merge( | |
lora_A=lora_list[0], lora_scale_A=args[8], | |
lora_B=lora_list[1], lora_scale_B=args[10], | |
lora_C=lora_list[2], lora_scale_C=args[12], | |
lora_D=lora_list[3], lora_scale_D=args[14], | |
lora_E=lora_list[4], lora_scale_E=args[16], | |
) | |
print(lora_status) | |
sampler_name = args[17] | |
schedule_type_name = args[18] | |
_, _, msg_sampler = check_scheduler_compatibility( | |
sd_gen.model.class_name, sampler_name, schedule_type_name | |
) | |
if msg_sampler: | |
gr.Warning(msg_sampler) | |
if verbose_arg: | |
for status, lora in zip(lora_status, lora_list): | |
if status: | |
gr.Info(f"LoRA loaded in CPU: {lora}") | |
elif status is not None: | |
gr.Warning(f"Failed to load LoRA: {lora}") | |
if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu: | |
lora_cache_msg = ", ".join( | |
str(x) for x in sd_gen.model.lora_memory if x is not None | |
) | |
gr.Info(f"LoRAs in cache: {lora_cache_msg}") | |
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}" | |
if verbose_arg: | |
gr.Info(msg_request) | |
print(msg_request) | |
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update() | |
start_time = time.time() | |
# yield from sd_gen.generate_pipeline(*generation_args) | |
yield from dynamic_gpu_duration( | |
#return dynamic_gpu_duration( | |
sd_gen.generate_pipeline, | |
gpu_duration_arg, | |
*generation_args, | |
) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
msg_task_complete = ( | |
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds" | |
) | |
if verbose_arg: | |
gr.Info(msg_task_complete) | |
print(msg_task_complete) | |
yield msg_task_complete, gr.update(), gr.update() | |
def esrgan_upscale(image, upscaler_name, upscaler_size): | |
if image is None: return None | |
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata | |
from stablepy import UpscalerESRGAN | |
exif_image = extract_exif_data(image) | |
url_upscaler = UPSCALER_DICT_GUI[upscaler_name] | |
directory_upscalers = 'upscalers' | |
os.makedirs(directory_upscalers, exist_ok=True) | |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): | |
download_things(directory_upscalers, url_upscaler, HF_TOKEN) | |
scaler_beta = UpscalerESRGAN(0, 0) | |
image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}") | |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image) | |
return image_path | |
dynamic_gpu_duration.zerogpu = True | |
sd_gen_generate_pipeline.zerogpu = True | |
sd_gen = GuiSD() | |
from pathlib import Path | |
from PIL import Image | |
import PIL | |
import numpy as np | |
import random | |
import json | |
import shutil | |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path, | |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name, get_state, set_state, | |
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL, | |
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en, get_t2i_model_info, get_civitai_tag, save_image_history) | |
#@spaces.GPU | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, | |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0, | |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0, | |
sampler = "Euler", vae = None, translate=True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0], | |
recom_prompt = True, progress=gr.Progress(track_tqdm=True)): | |
MAX_SEED = np.iinfo(np.int32).max | |
image_previews = True | |
load_lora_cpu = False | |
verbose_info = False | |
gpu_duration = 59 | |
filename_pattern = "model,seed" | |
images: list[tuple[PIL.Image.Image, str | None]] = [] | |
progress(0, desc="Preparing...") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed).seed() | |
if translate: | |
prompt = translate_to_en(prompt) | |
negative_prompt = translate_to_en(prompt) | |
prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name, recom_prompt) | |
progress(0.5, desc="Preparing...") | |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt = \ | |
set_prompt_loras(prompt, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt) | |
lora1 = get_valid_lora_path(lora1) | |
lora2 = get_valid_lora_path(lora2) | |
lora3 = get_valid_lora_path(lora3) | |
lora4 = get_valid_lora_path(lora4) | |
lora5 = get_valid_lora_path(lora5) | |
progress(1, desc="Preparation completed. Starting inference...") | |
progress(0, desc="Loading model...") | |
for _ in sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0]): | |
pass | |
progress(1, desc="Model loaded.") | |
progress(0, desc="Starting Inference...") | |
for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps, | |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, | |
lora4, lora4_wt, lora5, lora5_wt, sampler, schedule_type, schedule_prediction_type, | |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024, | |
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None, | |
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "", | |
False, True, 1, True, False, image_previews, False, False, filename_pattern, "./images", False, False, False, True, 1, 0.55, | |
False, False, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32, | |
False, "", "", 0.35, True, True, False, 4, 4, 32, | |
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, 0.0, | |
load_lora_cpu, verbose_info, gpu_duration | |
): | |
images = stream_images if isinstance(stream_images, list) else images | |
progress(1, desc="Inference completed.") | |
output_image = images[0][0] if images else None | |
return output_image | |
#@spaces.GPU | |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, | |
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0, | |
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0, | |
sampler = "Euler", vae = None, translate = True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0], | |
recom_prompt = True, progress=gr.Progress(track_tqdm=True)): | |
return gr.update() | |
infer.zerogpu = True | |
_infer.zerogpu = True | |
def pass_result(result): | |
return result | |
def get_samplers(): | |
return scheduler_names | |
def get_vaes(): | |
return vae_model_list | |
cached_diffusers_model_tupled_list = get_tupled_model_list(load_diffusers_format_model) | |
def get_diffusers_model_list(state: dict = {}): | |
show_diffusers_model_list_detail = get_state(state, "show_diffusers_model_list_detail") | |
if show_diffusers_model_list_detail: | |
return cached_diffusers_model_tupled_list | |
else: | |
return load_diffusers_format_model | |
def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "", state: dict = {}): | |
show_diffusers_model_list_detail = is_enable | |
new_value = model_name | |
index = 0 | |
if model_name in set(load_diffusers_format_model): | |
index = load_diffusers_format_model.index(model_name) | |
if is_enable: | |
new_value = cached_diffusers_model_tupled_list[index][1] | |
else: | |
new_value = load_diffusers_format_model[index] | |
set_state(state, "show_diffusers_model_list_detail", show_diffusers_model_list_detail) | |
return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list(state)), state | |
def load_model_prompt_dict(): | |
dict = {} | |
try: | |
with open('model_dict.json', encoding='utf-8') as f: | |
dict = json.load(f) | |
except Exception: | |
pass | |
return dict | |
model_prompt_dict = load_model_prompt_dict() | |
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres") | |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") | |
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") | |
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") | |
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed") | |
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly") | |
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres") | |
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") | |
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None", model_recom_prompt_enabled = True): | |
if not model_recom_prompt_enabled or not model_name: return prompt, neg_prompt | |
prompts = to_list(prompt) | |
neg_prompts = to_list(neg_prompt) | |
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps) | |
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps) | |
last_empty_p = [""] if not prompts and type != "None" else [] | |
last_empty_np = [""] if not neg_prompts and type != "None" else [] | |
ps = [] | |
nps = [] | |
if model_name in model_prompt_dict.keys(): | |
ps = to_list(model_prompt_dict[model_name]["prompt"]) | |
nps = to_list(model_prompt_dict[model_name]["negative_prompt"]) | |
else: | |
ps = default_ps | |
nps = default_nps | |
prompts = prompts + ps | |
neg_prompts = neg_prompts + nps | |
prompt = ", ".join(list_uniq(prompts) + last_empty_p) | |
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) | |
return prompt, neg_prompt | |
private_lora_dict = {} | |
try: | |
with open('lora_dict.json', encoding='utf-8') as f: | |
d = json.load(f) | |
for k, v in d.items(): | |
private_lora_dict[escape_lora_basename(k)] = v | |
except Exception: | |
pass | |
private_lora_model_list = get_private_lora_model_lists() | |
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy() | |
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...} | |
civitai_last_results = {} # {"URL to download": {search results}, ...} | |
all_lora_list = [] | |
def get_all_lora_list(): | |
global all_lora_list | |
loras = get_lora_model_list() | |
all_lora_list = loras.copy() | |
return loras | |
def get_all_lora_tupled_list(): | |
global loras_dict | |
models = get_all_lora_list() | |
if not models: return [] | |
tupled_list = [] | |
for model in models: | |
#if not model: continue # to avoid GUI-related bug | |
basename = Path(model).stem | |
key = to_lora_key(model) | |
items = None | |
if key in loras_dict.keys(): | |
items = loras_dict.get(key, None) | |
else: | |
items = get_civitai_info(model) | |
if items != None: | |
loras_dict[key] = items | |
name = basename | |
value = model | |
if items and items[2] != "": | |
if items[1] == "Pony": | |
name = f"{basename} (for {items[1]}🐴, {items[2]})" | |
else: | |
name = f"{basename} (for {items[1]}, {items[2]})" | |
tupled_list.append((name, value)) | |
return tupled_list | |
def update_lora_dict(path: str): | |
global loras_dict | |
key = to_lora_key(path) | |
if key in loras_dict.keys(): return | |
items = get_civitai_info(path) | |
if items == None: return | |
loras_dict[key] = items | |
def download_lora(dl_urls: str): | |
global loras_url_to_path_dict | |
dl_path = "" | |
before = get_local_model_list(DIRECTORY_LORAS) | |
urls = [] | |
for url in [url.strip() for url in dl_urls.split(',')]: | |
local_path = f"{DIRECTORY_LORAS}/{url.split('/')[-1]}" | |
if not Path(local_path).exists(): | |
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) | |
urls.append(url) | |
after = get_local_model_list(DIRECTORY_LORAS) | |
new_files = list_sub(after, before) | |
i = 0 | |
for file in new_files: | |
path = Path(file) | |
if path.exists(): | |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') | |
path.resolve().rename(new_path.resolve()) | |
loras_url_to_path_dict[urls[i]] = str(new_path) | |
update_lora_dict(str(new_path)) | |
dl_path = str(new_path) | |
i += 1 | |
return dl_path | |
def copy_lora(path: str, new_path: str): | |
if path == new_path: return new_path | |
cpath = Path(path) | |
npath = Path(new_path) | |
if cpath.exists(): | |
try: | |
shutil.copy(str(cpath.resolve()), str(npath.resolve())) | |
except Exception: | |
return None | |
update_lora_dict(str(npath)) | |
return new_path | |
else: | |
return None | |
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str): | |
path = download_lora(dl_urls) | |
if path: | |
if not lora1 or lora1 == "None": | |
lora1 = path | |
elif not lora2 or lora2 == "None": | |
lora2 = path | |
elif not lora3 or lora3 == "None": | |
lora3 = path | |
elif not lora4 or lora4 == "None": | |
lora4 = path | |
elif not lora5 or lora5 == "None": | |
lora5 = path | |
choices = get_all_lora_tupled_list() | |
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\ | |
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices) | |
def set_prompt_loras(prompt, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): | |
import re | |
lora1 = get_valid_lora_name(lora1, model_name) | |
lora2 = get_valid_lora_name(lora2, model_name) | |
lora3 = get_valid_lora_name(lora3, model_name) | |
lora4 = get_valid_lora_name(lora4, model_name) | |
lora5 = get_valid_lora_name(lora5, model_name) | |
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt | |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt) | |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt) | |
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt) | |
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt) | |
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt) | |
on1, label1, tag1, md1 = get_lora_info(lora1) | |
on2, label2, tag2, md2 = get_lora_info(lora2) | |
on3, label3, tag3, md3 = get_lora_info(lora3) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
on5, label5, tag5, md5 = get_lora_info(lora5) | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
prompts = prompt.split(",") if prompt else [] | |
for p in prompts: | |
p = str(p).strip() | |
if "<lora" in p: | |
result = re.findall(r'<lora:(.+?):(.+?)>', p) | |
if not result: continue | |
key = result[0][0] | |
wt = result[0][1] | |
path = to_lora_path(key) | |
if not key in loras_dict.keys() or not path: | |
path = get_valid_lora_name(path) | |
if not path or path == "None": continue | |
if path in lora_paths: | |
continue | |
elif not on1: | |
lora1 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora1_wt = safe_float(wt) | |
on1 = True | |
elif not on2: | |
lora2 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora2_wt = safe_float(wt) | |
on2 = True | |
elif not on3: | |
lora3 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora3_wt = safe_float(wt) | |
on3 = True | |
elif not on4: | |
lora4 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora4_wt = safe_float(wt) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
elif not on5: | |
lora5 = path | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
lora5_wt = safe_float(wt) | |
on5 = True | |
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt | |
def apply_lora_prompt(prompt: str, lora_info: str): | |
if lora_info == "None": return gr.update(value=prompt) | |
tags = prompt.split(",") if prompt else [] | |
prompts = normalize_prompt_list(tags) | |
lora_tag = lora_info.replace("/",",") | |
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] | |
lora_prompts = normalize_prompt_list(lora_tags) | |
empty = [""] | |
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty) | |
return gr.update(value=prompt) | |
def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): | |
import re | |
on1, label1, tag1, md1 = get_lora_info(lora1) | |
on2, label2, tag2, md2 = get_lora_info(lora2) | |
on3, label3, tag3, md3 = get_lora_info(lora3) | |
on4, label4, tag4, md4 = get_lora_info(lora4) | |
on5, label5, tag5, md5 = get_lora_info(lora5) | |
lora_paths = [lora1, lora2, lora3, lora4, lora5] | |
prompts = prompt.split(",") if prompt else [] | |
output_prompts = [] | |
for p in prompts: | |
p = str(p).strip() | |
if "<lora" in p: | |
result = re.findall(r'<lora:(.+?):(.+?)>', p) | |
if not result: continue | |
key = result[0][0] | |
wt = result[0][1] | |
path = to_lora_path(key) | |
if not key in loras_dict.keys() or not path: continue | |
if path in lora_paths: | |
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>") | |
elif p: | |
output_prompts.append(p) | |
lora_prompts = [] | |
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>") | |
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>") | |
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>") | |
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>") | |
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>") | |
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""])) | |
choices = get_all_lora_tupled_list() | |
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\ | |
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\ | |
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\ | |
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\ | |
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\ | |
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\ | |
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\ | |
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\ | |
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\ | |
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5) | |
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]): | |
global civitai_last_results, civitai_last_choices, civitai_last_gallery | |
civitai_last_choices = [("", "")] | |
civitai_last_gallery = [] | |
civitai_last_results = {} | |
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user) | |
if not items: return gr.update(choices=[("", "")], value="", visible=False),\ | |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
civitai_last_results = {} | |
choices = [] | |
gallery = [] | |
for item in items: | |
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model'] | |
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})" | |
value = item['dl_url'] | |
choices.append((name, value)) | |
gallery.append((item['img_url'], name)) | |
civitai_last_results[value] = item | |
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\ | |
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
civitai_last_choices = choices | |
civitai_last_gallery = gallery | |
result = civitai_last_results.get(choices[0][1], "None") | |
md = result['md'] if result else "" | |
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\ | |
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery) | |
def update_civitai_selection(evt: gr.SelectData): | |
try: | |
selected_index = evt.index | |
selected = civitai_last_choices[selected_index][1] | |
return gr.update(value=selected) | |
except Exception: | |
return gr.update(visible=True) | |
def select_civitai_lora(search_result): | |
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True) | |
result = civitai_last_results.get(search_result, "None") | |
md = result['md'] if result else "" | |
return gr.update(value=search_result), gr.update(value=md, visible=True) | |
def search_civitai_lora_json(query, base_model): | |
results = {} | |
items = search_lora_on_civitai(query, base_model) | |
if not items: return gr.update(value=results) | |
for item in items: | |
results[item['dl_url']] = item | |
return gr.update(value=results) | |
quality_prompt_list = [ | |
{ | |
"name": "None", | |
"prompt": "", | |
"negative_prompt": "lowres", | |
}, | |
{ | |
"name": "Animagine Common", | |
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
}, | |
{ | |
"name": "Pony Anime Common", | |
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", | |
}, | |
{ | |
"name": "Pony Common", | |
"prompt": "source_anime, score_9, score_8_up, score_7_up", | |
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", | |
}, | |
{ | |
"name": "Animagine Standard v3.0", | |
"prompt": "masterpiece, best quality", | |
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name", | |
}, | |
{ | |
"name": "Animagine Standard v3.1", | |
"prompt": "masterpiece, best quality, very aesthetic, absurdres", | |
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
}, | |
{ | |
"name": "Animagine Light v3.1", | |
"prompt": "(masterpiece), best quality, very aesthetic, perfect face", | |
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn", | |
}, | |
{ | |
"name": "Animagine Heavy v3.1", | |
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing", | |
}, | |
] | |
style_list = [ | |
{ | |
"name": "None", | |
"prompt": "", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list} | |
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None"): | |
def to_list(s): | |
return [x.strip() for x in s.split(",") if not s == ""] | |
def list_sub(a, b): | |
return [e for e in a if e not in b] | |
def list_uniq(l): | |
return sorted(set(l), key=l.index) | |
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres") | |
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") | |
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") | |
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") | |
prompts = to_list(prompt) | |
neg_prompts = to_list(neg_prompt) | |
all_styles_ps = [] | |
all_styles_nps = [] | |
for d in style_list: | |
all_styles_ps.extend(to_list(str(d.get("prompt", "")))) | |
all_styles_nps.extend(to_list(str(d.get("negative_prompt", "")))) | |
all_quality_ps = [] | |
all_quality_nps = [] | |
for d in quality_prompt_list: | |
all_quality_ps.extend(to_list(str(d.get("prompt", "")))) | |
all_quality_nps.extend(to_list(str(d.get("negative_prompt", "")))) | |
quality_ps = to_list(preset_quality[quality_key][0]) | |
quality_nps = to_list(preset_quality[quality_key][1]) | |
styles_ps = to_list(preset_styles[styles_key][0]) | |
styles_nps = to_list(preset_styles[styles_key][1]) | |
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps) | |
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps) | |
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] | |
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] | |
if type == "Animagine": | |
prompts = prompts + animagine_ps | |
neg_prompts = neg_prompts + animagine_nps | |
elif type == "Pony": | |
prompts = prompts + pony_ps | |
neg_prompts = neg_prompts + pony_nps | |
prompts = prompts + styles_ps + quality_ps | |
neg_prompts = neg_prompts + styles_nps + quality_nps | |
prompt = ", ".join(list_uniq(prompts) + last_empty_p) | |
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) | |
return gr.update(value=prompt), gr.update(value=neg_prompt) | |
def save_images(images: list[Image.Image], metadatas: list[str]): | |
from PIL import PngImagePlugin | |
try: | |
output_images = [] | |
for image, metadata in zip(images, metadatas): | |
info = PngImagePlugin.PngInfo() | |
info.add_text("parameters", metadata) | |
savefile = "image.png" | |
image.save(savefile, "PNG", pnginfo=info) | |
output_images.append(str(Path(savefile).resolve())) | |
return output_images | |
except Exception as e: | |
print(f"Failed to save image file: {e}") | |
raise Exception(f"Failed to save image file:") from e | |