John6666 commited on
Commit
3763349
·
verified ·
1 Parent(s): b4477ed

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +10 -3
  2. dc.py +13 -15
app.py CHANGED
@@ -76,12 +76,16 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
76
  with gr.Row():
77
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
78
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
79
 
80
  with gr.Row():
81
  width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
82
  height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
83
  guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
84
  num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
 
 
 
85
 
86
  with gr.Row():
87
  with gr.Column(scale=4):
@@ -204,7 +208,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
204
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
205
  guidance_scale, num_inference_steps, model_name,
206
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
207
- sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
 
208
  outputs=[result],
209
  queue=True,
210
  show_progress="full",
@@ -217,7 +222,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
217
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
218
  guidance_scale, num_inference_steps, model_name,
219
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
220
- sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
 
221
  outputs=[result],
222
  queue=False,
223
  show_api=True,
@@ -240,7 +246,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
240
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
241
  guidance_scale, num_inference_steps, model_name,
242
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
243
- sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
 
244
  outputs=[result],
245
  queue=True,
246
  show_progress="full",
 
76
  with gr.Row():
77
  seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
78
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
79
+ gpu_duration = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
80
 
81
  with gr.Row():
82
  width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
83
  height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
84
  guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
85
  num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
86
+ pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
87
+ clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
88
+ free_u = gr.Checkbox(value=False, label="FreeU")
89
 
90
  with gr.Row():
91
  with gr.Column(scale=4):
 
208
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
209
  guidance_scale, num_inference_steps, model_name,
210
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
211
+ sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
212
+ clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
213
  outputs=[result],
214
  queue=True,
215
  show_progress="full",
 
222
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
223
  guidance_scale, num_inference_steps, model_name,
224
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
225
+ sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
226
+ clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
227
  outputs=[result],
228
  queue=False,
229
  show_api=True,
 
246
  inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
247
  guidance_scale, num_inference_steps, model_name,
248
  lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
249
+ sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
250
+ clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
251
  outputs=[result],
252
  queue=True,
253
  show_progress="full",
dc.py CHANGED
@@ -139,7 +139,7 @@ class GuiSD:
139
  self.last_load = datetime.now()
140
  self.inventory = []
141
 
142
- def update_storage_models(self, storage_floor_gb=42, required_inventory_for_purge=3):
143
  while get_used_storage_gb() > storage_floor_gb:
144
  if len(self.inventory) < required_inventory_for_purge:
145
  break
@@ -726,23 +726,21 @@ from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_pat
726
 
727
  #@spaces.GPU
728
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
729
- model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
730
- lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
731
- sampler = "Euler", vae = None, translate=True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
732
- recom_prompt = True, progress=gr.Progress(track_tqdm=True)):
733
  MAX_SEED = np.iinfo(np.int32).max
734
 
735
  image_previews = True
736
  load_lora_cpu = False
737
  verbose_info = False
738
- gpu_duration = 59
739
  filename_pattern = "model,seed"
740
 
741
  images: list[tuple[PIL.Image.Image, str | None]] = []
742
  progress(0, desc="Preparing...")
743
 
744
- if randomize_seed:
745
- seed = random.randint(0, MAX_SEED)
746
 
747
  generator = torch.Generator().manual_seed(seed).seed()
748
 
@@ -767,15 +765,15 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
767
  progress(1, desc="Model loaded.")
768
  progress(0, desc="Starting Inference...")
769
  for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
770
- guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
771
  lora4, lora4_wt, lora5, lora5_wt, sampler, schedule_type, schedule_prediction_type,
772
  height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
773
  None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
774
  1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
775
  False, True, 1, True, False, image_previews, False, False, filename_pattern, "./images", False, False, False, True, 1, 0.55,
776
- False, False, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
777
  False, "", "", 0.35, True, True, False, 4, 4, 32,
778
- True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, 0.0,
779
  load_lora_cpu, verbose_info, gpu_duration
780
  ):
781
  images = stream_images if isinstance(stream_images, list) else images
@@ -787,10 +785,10 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
787
 
788
  #@spaces.GPU
789
  def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
790
- model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
791
- lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
792
- sampler = "Euler", vae = None, translate = True, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
793
- recom_prompt = True, progress=gr.Progress(track_tqdm=True)):
794
  return gr.update()
795
 
796
 
 
139
  self.last_load = datetime.now()
140
  self.inventory = []
141
 
142
+ def update_storage_models(self, storage_floor_gb=32, required_inventory_for_purge=3):
143
  while get_used_storage_gb() > storage_floor_gb:
144
  if len(self.inventory) < required_inventory_for_purge:
145
  break
 
726
 
727
  #@spaces.GPU
728
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
729
+ model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
730
+ lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0,
731
+ sampler="Euler", vae=None, translate=False, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
732
+ clip_skip=True, pag_scale=0.0, free_u=False, gpu_duration=59, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
733
  MAX_SEED = np.iinfo(np.int32).max
734
 
735
  image_previews = True
736
  load_lora_cpu = False
737
  verbose_info = False
 
738
  filename_pattern = "model,seed"
739
 
740
  images: list[tuple[PIL.Image.Image, str | None]] = []
741
  progress(0, desc="Preparing...")
742
 
743
+ if randomize_seed: seed = random.randint(0, MAX_SEED)
 
744
 
745
  generator = torch.Generator().manual_seed(seed).seed()
746
 
 
765
  progress(1, desc="Model loaded.")
766
  progress(0, desc="Starting Inference...")
767
  for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
768
+ guidance_scale, clip_skip, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
769
  lora4, lora4_wt, lora5, lora5_wt, sampler, schedule_type, schedule_prediction_type,
770
  height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
771
  None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
772
  1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
773
  False, True, 1, True, False, image_previews, False, False, filename_pattern, "./images", False, False, False, True, 1, 0.55,
774
+ False, free_u, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
775
  False, "", "", 0.35, True, True, False, 4, 4, 32,
776
+ True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, pag_scale,
777
  load_lora_cpu, verbose_info, gpu_duration
778
  ):
779
  images = stream_images if isinstance(stream_images, list) else images
 
785
 
786
  #@spaces.GPU
787
  def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
788
+ model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
789
+ lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0,
790
+ sampler="Euler", vae=None, translate=False, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
791
+ clip_skip=True, pag_scale=0.0, free_u=False, gpu_duration=59, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
792
  return gr.update()
793
 
794