John Langley
change to cpu
97c030c
raw
history blame
9.98 kB
'''
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+
| Step 1: Set Up | | Step 2: Set Up Gradio | | Step 3: Speech-to-Text | | Step 4: Text-to-Speech |
| Environment | | Interface | | & Language Model Processing | | Output |
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+
| | | | | | | |
| - Import Python | | - Define interface | | - Transcribe audio | | - XTTS model generates |
| libraries | | components | | to text using | | spoken response from |
| - Initialize models: |--------> - Configure audio and |------->| Faster Whisper ASR |------->| LLM's text response |
| Whisper, Mistral, | | text interaction | | - Transcribed text | | |
| XTTS | | - Launch interface | | is added to | | |
| | | | | chatbot's history | | |
| | | | | - Mistral LLM | | |
| | | | | processes chatbot | | |
| | | | | history to generate | | |
| | | | | response | | |
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+
'''
###### Set Up Environment ######
import os
# Set CUDA environment variable and install llama-cpp-python
# llama-cpp-python is a python binding for llama.cpp library which enables LLM inference in pure C/C++
os.environ["CUDACXX"] = "/usr/local/cuda/bin/nvcc"
os.system('python -m unidic download')
os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.11 --verbose')
# Third-party library imports
from faster_whisper import WhisperModel
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from TTS.utils.manage import ModelManager
# Local imports
from utils import get_sentence, generate_speech_for_sentence, wave_header_chunk
# Load Whisper ASR model
print("Loading Whisper ASR")
whisper_model = WhisperModel("large-v3", device="cpu", compute_type="float32")
# Load Mistral LLM
print("Loading Mistral LLM")
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", local_dir=".", filename="mistral-7b-instruct-v0.1.Q5_K_M.gguf")
mistral_model_path="./mistral-7b-instruct-v0.1.Q5_K_M.gguf"
mistral_llm = Llama(model_path=mistral_model_path,n_gpu_layers=35,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=False)
# Load XTTS Model
print("Loading XTTS model")
#os.environ["COQUI_TOS_AGREED"] = "1"
#tts_model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
#ModelManager().download_model(tts_model_name)
#tts_model_path = os.path.join(get_user_data_dir("tts"), tts_model_name.replace("/", "--"))
#config = XttsConfig()
#config.load_json(os.path.join(tts_model_path, "config.json"))
#xtts_model = Xtts.init_from_config(config)
#xtts_model.load_checkpoint(
# config,
# checkpoint_path=os.path.join(tts_model_path, "model.pth"),
# vocab_path=os.path.join(tts_model_path, "vocab.json"),
# eval=True,
# use_deepspeed=True,
#)
#xtts_model.cuda()
print("UN-Loading XTTS model")
###### Set up Gradio Interface ######
with gr.Blocks(title="Voice chat with LLM") as demo:
DESCRIPTION = """# Voice chat with LLM"""
gr.Markdown(DESCRIPTION)
# Define chatbot component
chatbot = gr.Chatbot(
value=[(None, "Hi friend, I'm Amy, an AI coach. How can I help you today?")], # Initial greeting from the chatbot
elem_id="chatbot",
avatar_images=("examples/hf-logo.png", "examples/ai-chat-logo.png"),
bubble_full_width=False,
)
# Define chatbot voice component
VOICES = ["female", "male"]
with gr.Row():
chatbot_voice = gr.Dropdown(
label="Voice of the Chatbot",
info="How should Chatbot talk like",
choices=VOICES,
max_choices=1,
value=VOICES[0],
)
# Define text and audio record input components
with gr.Row():
txt_box = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter, or speak to your microphone",
container=False,
interactive=True,
)
audio_record = gr.Audio(source="microphone", type="filepath", scale=4)
# Define generated audio playback component
with gr.Row():
sentence = gr.Textbox(visible=False)
audio_playback = gr.Audio(
value=None,
label="Generated audio response",
streaming=True,
autoplay=True,
interactive=False,
show_label=True,
)
# Will be triggered on text submit (will send to generate_speech)
def add_text(chatbot_history, text):
chatbot_history = [] if chatbot_history is None else chatbot_history
chatbot_history = chatbot_history + [(text, None)]
return chatbot_history, gr.update(value="", interactive=False)
# Will be triggered on voice submit (will transribe and send to generate_speech)
def add_audio(chatbot_history, audio):
chatbot_history = [] if chatbot_history is None else chatbot_history
# get result from whisper and strip it to delete begin and end space
response, _ = whisper_model.transcribe(audio)
text = list(response)[0].text.strip()
print("Transcribed text:", text)
chatbot_history = chatbot_history + [(text, None)]
return chatbot_history, gr.update(value="", interactive=False)
def generate_speech(chatbot_history, chatbot_voice, initial_greeting=False):
# Start by yielding an initial empty audio to set up autoplay
yield ("", chatbot_history, wave_header_chunk())
# Helper function to handle the speech generation and yielding process
def handle_speech_generation(sentence, chatbot_history, chatbot_voice):
if sentence != "":
print("Processing sentence")
yield (sentence, chatbot_history, None)
# generated_speech = generate_speech_for_sentence(chatbot_history, chatbot_voice, sentence, xtts_model, xtts_supported_languages=config.languages, return_as_byte=True)
# if generated_speech is not None:
# _, audio_dict = generated_speech
# yield (sentence, chatbot_history, audio_dict["value"])
if initial_greeting:
# Process only the initial greeting if specified
for _, sentence in chatbot_history:
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
else:
# Continuously get and process sentences from a generator function
for sentence, chatbot_history in get_sentence(chatbot_history, mistral_llm):
print("Inserting sentence to queue")
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
txt_msg = txt_box.submit(fn=add_text, inputs=[chatbot, txt_box], outputs=[chatbot, txt_box], queue=False
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
txt_msg.then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=[txt_box], queue=False)
audio_msg = audio_record.stop_recording(fn=add_audio, inputs=[chatbot, audio_record], outputs=[chatbot, txt_box], queue=False
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
audio_msg.then(fn=lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), inputs=None, outputs=[txt_box, audio_record], queue=False)
FOOTNOTE = """
This Space demonstrates how to speak to an llm chatbot, based solely on open accessible models.
It relies on the following models :
- Speech to Text Model: [Faster-Whisper-large-v3](https://huggingface.co/Systran/faster-whisper-large-v3) an ASR model, to transcribe recorded audio to text.
- Large Language Model: [Mistral-7b-instruct-v0.1-quantized](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) a LLM to generate the chatbot responses.
- Text to Speech Model: [XTTS-v2](https://huggingface.co/spaces/coqui/xtts) a TTS model, to generate the voice of the chatbot.
Note:
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
gr.Markdown(FOOTNOTE)
demo.load(fn=generate_speech, inputs=[chatbot,chatbot_voice, gr.State(value=True)], outputs=[sentence, chatbot, audio_playback])
demo.queue().launch(debug=True,share=True)