Spaces:
Runtime error
Runtime error
John Langley
commited on
Commit
·
bc0e3c7
1
Parent(s):
4404242
trying things with cpu
Browse files
app.py
CHANGED
@@ -32,13 +32,13 @@ from faster_whisper import WhisperModel
|
|
32 |
import gradio as gr
|
33 |
from huggingface_hub import hf_hub_download
|
34 |
from llama_cpp import Llama
|
35 |
-
from TTS.tts.configs.xtts_config import XttsConfig
|
36 |
-
from TTS.tts.models.xtts import Xtts
|
37 |
-
from TTS.utils.generic_utils import get_user_data_dir
|
38 |
-
from TTS.utils.manage import ModelManager
|
39 |
|
40 |
# Local imports
|
41 |
-
from utils import get_sentence
|
42 |
|
43 |
# Load Whisper ASR model
|
44 |
print("Loading Whisper ASR")
|
@@ -52,22 +52,22 @@ mistral_llm = Llama(model_path=mistral_model_path,n_gpu_layers=35,max_new_tokens
|
|
52 |
|
53 |
|
54 |
# Load XTTS Model
|
55 |
-
print("Loading XTTS model")
|
56 |
-
os.environ["COQUI_TOS_AGREED"] = "1"
|
57 |
-
tts_model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
|
58 |
-
ModelManager().download_model(tts_model_name)
|
59 |
-
tts_model_path = os.path.join(get_user_data_dir("tts"), tts_model_name.replace("/", "--"))
|
60 |
-
config = XttsConfig()
|
61 |
-
config.load_json(os.path.join(tts_model_path, "config.json"))
|
62 |
-
xtts_model = Xtts.init_from_config(config)
|
63 |
-
xtts_model.to("cpu")
|
64 |
-
xtts_model.load_checkpoint(
|
65 |
-
config,
|
66 |
-
checkpoint_path=os.path.join(tts_model_path, "model.pth"),
|
67 |
-
vocab_path=os.path.join(tts_model_path, "vocab.json"),
|
68 |
-
eval=True,
|
69 |
-
use_deepspeed=True,
|
70 |
-
)
|
71 |
#xtts_model.cuda()
|
72 |
#print("UN-Loading XTTS model")
|
73 |
|
@@ -114,8 +114,7 @@ with gr.Blocks(title="Voice chat with LLM") as demo:
|
|
114 |
value=None,
|
115 |
label="Generated audio response",
|
116 |
streaming=True,
|
117 |
-
autoplay=True,
|
118 |
-
interactive=False,
|
119 |
show_label=True,
|
120 |
)
|
121 |
|
@@ -137,36 +136,37 @@ with gr.Blocks(title="Voice chat with LLM") as demo:
|
|
137 |
|
138 |
def generate_speech(chatbot_history, chatbot_voice, initial_greeting=False):
|
139 |
# Start by yielding an initial empty audio to set up autoplay
|
140 |
-
yield ("", chatbot_history, wave_header_chunk())
|
|
|
141 |
|
142 |
# Helper function to handle the speech generation and yielding process
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
|
161 |
txt_msg = txt_box.submit(fn=add_text, inputs=[chatbot, txt_box], outputs=[chatbot, txt_box], queue=False
|
162 |
-
)
|
163 |
|
164 |
txt_msg.then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=[txt_box], queue=False)
|
165 |
|
166 |
-
audio_msg = audio_record.stop_recording(fn=add_audio, inputs=[chatbot, audio_record], outputs=[chatbot, txt_box], queue=False
|
167 |
-
|
168 |
|
169 |
-
audio_msg.then(fn=lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), inputs=None, outputs=[txt_box, audio_record], queue=False)
|
170 |
|
171 |
FOOTNOTE = """
|
172 |
This Space demonstrates how to speak to an llm chatbot, based solely on open accessible models.
|
@@ -179,5 +179,5 @@ with gr.Blocks(title="Voice chat with LLM") as demo:
|
|
179 |
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
|
180 |
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
|
181 |
gr.Markdown(FOOTNOTE)
|
182 |
-
demo.load(fn=generate_speech, inputs=[chatbot,chatbot_voice, gr.State(value=True)], outputs=[sentence, chatbot, audio_playback])
|
183 |
demo.queue().launch(debug=True,share=True)
|
|
|
32 |
import gradio as gr
|
33 |
from huggingface_hub import hf_hub_download
|
34 |
from llama_cpp import Llama
|
35 |
+
#from TTS.tts.configs.xtts_config import XttsConfig
|
36 |
+
#from TTS.tts.models.xtts import Xtts
|
37 |
+
#from TTS.utils.generic_utils import get_user_data_dir
|
38 |
+
#from TTS.utils.manage import ModelManager
|
39 |
|
40 |
# Local imports
|
41 |
+
from utils import get_sentence #, generate_speech_for_sentence, wave_header_chunk
|
42 |
|
43 |
# Load Whisper ASR model
|
44 |
print("Loading Whisper ASR")
|
|
|
52 |
|
53 |
|
54 |
# Load XTTS Model
|
55 |
+
#print("Loading XTTS model")
|
56 |
+
#os.environ["COQUI_TOS_AGREED"] = "1"
|
57 |
+
#tts_model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
|
58 |
+
#ModelManager().download_model(tts_model_name)
|
59 |
+
#tts_model_path = os.path.join(get_user_data_dir("tts"), tts_model_name.replace("/", "--"))
|
60 |
+
#config = XttsConfig()
|
61 |
+
#config.load_json(os.path.join(tts_model_path, "config.json"))
|
62 |
+
#xtts_model = Xtts.init_from_config(config)
|
63 |
+
#xtts_model.to("cpu")
|
64 |
+
#xtts_model.load_checkpoint(
|
65 |
+
# config,
|
66 |
+
# checkpoint_path=os.path.join(tts_model_path, "model.pth"),
|
67 |
+
# vocab_path=os.path.join(tts_model_path, "vocab.json"),
|
68 |
+
# eval=True,
|
69 |
+
# use_deepspeed=True,
|
70 |
+
#)
|
71 |
#xtts_model.cuda()
|
72 |
#print("UN-Loading XTTS model")
|
73 |
|
|
|
114 |
value=None,
|
115 |
label="Generated audio response",
|
116 |
streaming=True,
|
117 |
+
autoplay=True,interactive=False,
|
|
|
118 |
show_label=True,
|
119 |
)
|
120 |
|
|
|
136 |
|
137 |
def generate_speech(chatbot_history, chatbot_voice, initial_greeting=False):
|
138 |
# Start by yielding an initial empty audio to set up autoplay
|
139 |
+
#yield ("", chatbot_history, wave_header_chunk())
|
140 |
+
yield ("", chatbot_history)
|
141 |
|
142 |
# Helper function to handle the speech generation and yielding process
|
143 |
+
# def handle_speech_generation(sentence, chatbot_history, chatbot_voice):
|
144 |
+
# if sentence != "":
|
145 |
+
# print("Processing sentence")
|
146 |
+
# generated_speech = generate_speech_for_sentence(chatbot_history, chatbot_voice, sentence, xtts_model, xtts_supported_languages=config.languages, return_as_byte=True)
|
147 |
+
# if generated_speech is not None:
|
148 |
+
# _, audio_dict = generated_speech
|
149 |
+
# yield (sentence, chatbot_history, audio_dict["value"])
|
150 |
+
|
151 |
+
# if initial_greeting:
|
152 |
+
# # Process only the initial greeting if specified
|
153 |
+
# for _, sentence in chatbot_history:
|
154 |
+
# yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
|
155 |
+
# else:
|
156 |
+
# # Continuously get and process sentences from a generator function
|
157 |
+
# for sentence, chatbot_history in get_sentence(chatbot_history, mistral_llm):
|
158 |
+
# print("Inserting sentence to queue")
|
159 |
+
# yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
|
160 |
|
161 |
txt_msg = txt_box.submit(fn=add_text, inputs=[chatbot, txt_box], outputs=[chatbot, txt_box], queue=False
|
162 |
+
)#.then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
|
163 |
|
164 |
txt_msg.then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=[txt_box], queue=False)
|
165 |
|
166 |
+
#audio_msg = audio_record.stop_recording(fn=add_audio, inputs=[chatbot, audio_record], outputs=[chatbot, txt_box], queue=False
|
167 |
+
# ).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
|
168 |
|
169 |
+
#audio_msg.then(fn=lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), inputs=None, outputs=[txt_box, audio_record], queue=False)
|
170 |
|
171 |
FOOTNOTE = """
|
172 |
This Space demonstrates how to speak to an llm chatbot, based solely on open accessible models.
|
|
|
179 |
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
|
180 |
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
|
181 |
gr.Markdown(FOOTNOTE)
|
182 |
+
demo.load(fn=generate_speech, inputs=[chatbot,chatbot_voice, gr.State(value=True)], outputs=[sentence, chatbot]) #outputs=[sentence, chatbot, audio_playback])
|
183 |
demo.queue().launch(debug=True,share=True)
|