import gradio as gr import torch from diffusers.pipelines import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float32, use_safetensors=True, ) if torch.cuda.is_available(): pipe.to("cuda") def generate_image(text): image = pipe(text).images[0] return image def generate_output(input_text): # Generate the output image output_image = generate_image(input_text) return output_image with gr.Blocks() as demo: with gr.Row(): inputs = gr.Textbox(value="A cat", label="Enter your prompt here!") btn_submit = gr.Button(value="Generate Image") with gr.Row(): outputs = gr.Image(label="Generated Image") btn_submit.click(generate_output, inputs, outputs) demo.launch()