File size: 5,268 Bytes
a5bbcdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import logging
import os
from pathlib import Path

import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only

from utils.utils_verbalisation_module import save_json
from pytorch_lightning.utilities import rank_zero_info

def count_trainable_parameters(model):
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
    return params


logger = logging.getLogger(__name__)



class Seq2SeqLoggingCallback(pl.Callback):
    def on_batch_end(self, trainer, pl_module):
        lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
        pl_module.logger.log_metrics(lrs)

    @rank_zero_only
    def _write_logs(
        self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
    ) -> None:
        logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
        metrics = trainer.callback_metrics
        #print(metrics.keys())
        new_metrics = {}
        ms = ["log", "progress_bar", "preds"]
        for k, v in metrics.items():
            ver = True
            for m in ms:
                if m in k:
                    ver = False
                    break
            if ver:
                new_metrics[k] = v

        print(new_metrics)
        trainer.logger.log_metrics(new_metrics)
        # Log results
        od = Path(pl_module.hparams.output_dir)
        if type_path == "test":
            results_file = od / "test_results.txt"
            generations_file = od / "test_generations.txt"
        else:
            # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
            # If people want this it will be easy enough to add back.
            results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
            generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
            results_file.parent.mkdir(exist_ok=True)
            generations_file.parent.mkdir(exist_ok=True)
        with open(results_file, "a+") as writer:
            for key in sorted(metrics):
                if key in ["log", "progress_bar", "preds"]:
                    continue
                try:
                    val = metrics[key]
                    if isinstance(val, torch.Tensor):
                        val = val.item()
                    msg = f"{key}: {val:.6f}\n"
                    writer.write(msg)
                except:
                    pass

        if not save_generations:
            return

        if "preds" in metrics:
            content = "\n".join(metrics["preds"])
            generations_file.open("w+").write(content)

    @rank_zero_only
    def on_train_start(self, trainer, pl_module):
        try:
            npars = pl_module.model.model.num_parameters()
        except AttributeError:
            npars = pl_module.model.num_parameters()

        n_trainable_pars = count_trainable_parameters(pl_module)
        # mp stands for million parameters
        trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})

    @rank_zero_only
    def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
        save_json(pl_module.metrics, pl_module.metrics_save_path)
        return self._write_logs(trainer, pl_module, "test")

    @rank_zero_only
    def on_validation_end(self, trainer: pl.Trainer, pl_module):
        save_json(pl_module.metrics, pl_module.metrics_save_path)

        rank_zero_info("***** Validation results *****")
        metrics = trainer.callback_metrics
        # Log results
        for key in sorted(metrics):
            if key not in ["log", "progress_bar", "preds"]:
                rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
        # Uncommenting this will save val generations
        # return self._write_logs(trainer, pl_module, "valid")


def get_checkpoint_callback(output_dir, metric, save_top_k=1, lower_is_better=False):
    """Saves the best model by validation ROUGE2 score."""
    if metric == "rouge2":
        exp = "{val_avg_rouge2:.4f}-{step_count}"
    elif metric == "bleu":
        exp = "{val_avg_bleu:.4f}-{step_count}"
    elif metric == "loss":
        exp = "{val_avg_loss:.4f}-{step_count}"
    else:
        raise NotImplementedError(
            f"seq2seq callbacks only support rouge2, bleu and loss, got {metric}, You can make your own by adding to this function."
        )

    checkpoint_callback = ModelCheckpoint(
        filepath=os.path.join(output_dir, exp),
        monitor=f"val_{metric}",
        mode="min" if "loss" in metric else "max",
        save_top_k=save_top_k,
        period=0,  # maybe save a checkpoint every time val is run, not just end of epoch.
    )
    return checkpoint_callback


def get_early_stopping_callback(metric, patience):
    return EarlyStopping(
        monitor=f"val_{metric}",  # does this need avg?
        mode="min" if "loss" in metric else "max",
        patience=patience,
        verbose=True,
    )