from utils.finetune import Graph2TextModule from typing import Dict, List, Tuple, Union, Optional import torch import re if torch.cuda.is_available(): DEVICE = 'cuda' else: DEVICE = 'cpu' print('CUDA NOT AVAILABLE') CHECKPOINT = 'base/t5-base_13881_val_avg_bleu=68.1000-step_count=5.ckpt' MAX_LENGTH = 384 SEED = 42 class VerbModule(): def __init__(self, override_args: Dict[str, str] = None): # Model if not override_args: override_args = {} self.g2t_module = Graph2TextModule.load_from_checkpoint(CHECKPOINT, strict=False, **override_args) self.tokenizer = self.g2t_module.tokenizer # Unk replacer self.vocab = self.tokenizer.get_vocab() self.convert_some_japanese_characters = True self.unk_char_replace_sliding_window_size = 2 self.unknowns = [] def __generate_verbalisations_from_inputs(self, inputs: Union[str, List[str]]): try: inputs_encoding = self.tokenizer.prepare_seq2seq_batch( inputs, truncation=True, max_length=MAX_LENGTH, return_tensors='pt' ) inputs_encoding = {k: v.to(DEVICE) for k, v in inputs_encoding.items()} self.g2t_module.model.eval() with torch.no_grad(): gen_output = self.g2t_module.model.generate( inputs_encoding['input_ids'], attention_mask=inputs_encoding['attention_mask'], use_cache=True, decoder_start_token_id = self.g2t_module.decoder_start_token_id, num_beams= self.g2t_module.eval_beams, max_length= self.g2t_module.eval_max_length, length_penalty=1.0 ) except Exception: print(inputs) raise return gen_output ''' We create this function as an alteration from [this one](https://github.com/huggingface/transformers/blob/198c335d219a5eb4d3f124fdd1ce1a9cd9f78a9b/src/transformers/tokenization_utils_fast.py#L537), mainly because the official 'tokenizer.decode' treats all special tokens the same, while we want to drop all special tokens from the decoded sentence EXCEPT for the token, which we will replace later on. ''' def __decode_ids_to_string_custom( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True ) -> str: filtered_tokens = self.tokenizer.convert_ids_to_tokens(token_ids, skip_special_tokens=False) # Do not remove special tokens yet # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separatly for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and\ token != self.tokenizer.unk_token and\ token in self.tokenizer.all_special_tokens: continue else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.tokenizer.convert_tokens_to_string(current_sub_text)) text = " ".join(sub_texts) if clean_up_tokenization_spaces: clean_text = self.tokenizer.clean_up_tokenization(text) return clean_text else: return text def __decode_sentences(self, encoded_sentences: Union[str, List[str]]): if type(encoded_sentences) == str: encoded_sentences = [encoded_sentences] decoded_sentences = [self.__decode_ids_to_string_custom(i, skip_special_tokens=True) for i in encoded_sentences] return decoded_sentences def verbalise_sentence(self, inputs: Union[str, List[str]]): if type(inputs) == str: inputs = [inputs] gen_output = self.__generate_verbalisations_from_inputs(inputs) decoded_sentences = self.__decode_sentences(gen_output) if len(decoded_sentences) == 1: return decoded_sentences[0] else: return decoded_sentences def verbalise_triples(self, input_triples: Union[Dict[str, str], List[Dict[str, str]], List[List[Dict[str, str]]]]): if type(input_triples) == dict: input_triples = [input_triples] verbalisation_inputs = [] for triple in input_triples: if type(triple) == dict: assert 'subject' in triple assert 'predicate' in triple assert 'object' in triple verbalisation_inputs.append( f'translate Graph to English: {triple["subject"]} {triple["predicate"]} {triple["object"]}' ) elif type(triple) == list: input_sentence = ['translate Graph to English:'] for subtriple in triple: assert 'subject' in subtriple assert 'predicate' in subtriple assert 'object' in subtriple input_sentence.append(f' {subtriple["subject"]}') input_sentence.append(f' {subtriple["predicate"]}') input_sentence.append(f' {subtriple["object"]}') verbalisation_inputs.append( ' '.join(input_sentence) ) return self.verbalise_sentence(verbalisation_inputs) def verbalise(self, input: Union[str, List, Dict]): try: if (type(input) == str) or (type(input) == list and type(input[0]) == str): return self.verbalise_sentence(input) elif (type(input) == dict) or (type(input) == list and type(input[0]) == dict): return self.verbalise_triples(input) else: return self.verbalise_triples(input) except Exception: print(f'ERROR VERBALISING {input}') raise def add_label_to_unk_replacer(self, label: str): N = self.unk_char_replace_sliding_window_size self.unknowns.append({}) # Some pre-processing of labels to normalise some characters if self.convert_some_japanese_characters: label = label.replace('(','(') label = label.replace(')',')') label = label.replace('〈','<') label = label.replace('/','/') label = label.replace('〉','>') label_encoded = self.tokenizer.encode(label) label_tokens = self.tokenizer.convert_ids_to_tokens(label_encoded) # Here, we also remove (eos) and tokens in the replacing key, because: # 1) When the whole label is all unk: # label_token_to_string would be '', meaning the replacing key (which is the same) only replaces # the if it appears at the end of the sentence, which is not the desired effect. # But since this means ANY will be replaced by this, it would be good to only replace keys that are # on the last replacing pass. # 2) On other cases, then the unk is in the label but not in its entirety, like in the start/end, it might # involve the starting token or the ending token on the replacing key, again forcing the replacement # to only happen if the label appears in the end of the sentence. label_tokens = [t for t in label_tokens if t not in [ self.tokenizer.eos_token, self.tokenizer.pad_token ]] label_token_to_string = self.tokenizer.convert_tokens_to_string(label_tokens) unk_token_to_string = self.tokenizer.convert_tokens_to_string([self.tokenizer.unk_token]) #print(label_encoded,label_tokens,label_token_to_string) match_unks_in_label = re.findall('(?:(?: )*(?: )*)+', label_token_to_string) if len(match_unks_in_label) > 0: # If the whole label is made of UNK if (match_unks_in_label[0]) == label_token_to_string: #print('Label is all unks') self.unknowns[-1][label_token_to_string.strip()] = label # Else, there should be non-UNK characters in the label else: #print('Label is NOT all unks') # Analyse the label with a sliding window of size N (N before, N ahead) for idx, token in enumerate(label_tokens): idx_before = max(0,idx-N) idx_ahead = min(len(label_tokens), idx+N+1) # Found a UNK if token == self.tokenizer.unk_token: # In case multiple UNK, exclude UNKs seen after this one, expand window to other side if possible if len(match_unks_in_label) > 1: #print(idx) #print(label_tokens) #print(label_tokens[idx_before:idx_ahead]) #print('HERE!') # Reduce on the right, expanding on the left while self.tokenizer.unk_token in label_tokens[idx+1:idx_ahead]: idx_before = max(0,idx_before-1) idx_ahead = min(idx+2, idx_ahead-1) #print(label_tokens[idx_before:idx_ahead]) # Now just reduce on the left while self.tokenizer.unk_token in label_tokens[idx_before:idx]: idx_before = min(idx-1,idx_before+2) #print(label_tokens[idx_before:idx_ahead]) span = self.tokenizer.convert_tokens_to_string(label_tokens[idx_before:idx_ahead]) # First token of the label is UNK if idx == 1 and label_tokens[0] == '▁': #print('Label begins with unks') to_replace = '^' + re.escape(span).replace( re.escape(unk_token_to_string), '.+?' ) replaced_span = re.search( to_replace, label )[0] self.unknowns[-1][span.strip()] = replaced_span # Last token of the label is UNK elif idx == len(label_tokens)-2 and label_tokens[-1] == self.tokenizer.eos_token: #print('Label ends with unks') pre_idx = self.tokenizer.convert_tokens_to_string(label_tokens[idx_before:idx]) pre_idx_unk_counts = pre_idx.count(unk_token_to_string) to_replace = re.escape(span).replace( re.escape(unk_token_to_string), f'[^{re.escape(pre_idx)}]+?' ) + '$' if pre_idx.strip() == '': to_replace = to_replace.replace('[^]', '(?<=\s)[^a-zA-Z0-9]') replaced_span = re.search( to_replace, label )[0] self.unknowns[-1][span.strip()] = replaced_span # A token in-between the label is UNK else: #print('Label has unks in the middle') pre_idx = self.tokenizer.convert_tokens_to_string(label_tokens[idx_before:idx]) to_replace = re.escape(span).replace( re.escape(unk_token_to_string), f'[^{re.escape(pre_idx)}]+?' ) #If there is nothing behind the ??, because it is in the middle but the previous token is also #a ??, then we would end up with to_replace beginning with [^], which we can't have if pre_idx.strip() == '': to_replace = to_replace.replace('[^]', '(?<=\s)[^a-zA-Z0-9]') replaced_span = re.search( to_replace, label ) if replaced_span: span = re.sub(r'\s([?.!",](?:\s|$))', r'\1', span.strip()) self.unknowns[-1][span] = replaced_span[0] def replace_unks_on_sentence(self, sentence: str, loop_n : int = 3, empty_after : bool = False): # Loop through in case the labels are repeated, maximum of three times while '' in sentence and loop_n > 0: loop_n -= 1 for unknowns in self.unknowns: for k,v in unknowns.items(): # Leave to replace all-unk labels at the last pass if k == '' and loop_n > 0: continue # In case it is because the first letter of the sentence has been uppercased if not k in sentence and k[0] == k[0].lower() and k[0].upper() == sentence[0]: k = k[0].upper() + k[1:] v = v[0].upper() + v[1:] # In case it is because a double space is found where it should not be elif not k in sentence and len(re.findall(r'\s{2,}',k))>0: k = re.sub(r'\s+', ' ', k) #print(k,'/',v,'/',sentence) sentence = sentence.replace(k.strip(),v.strip(),1) #sentence = re.sub(k, v, sentence) # Removing final doublespaces sentence = re.sub(r'\s+', ' ', sentence).strip() # Removing spaces before punctuation sentence = re.sub(r'\s([?.!",](?:\s|$))', r'\1', sentence) if empty_after: self.unknowns = [] return sentence if __name__ == '__main__': verb_module = VerbModule() verbs = verb_module.verbalise('translate Graph to English: World Trade Center height 200 meter World Trade Center is a tower') print(verbs)