|
import os |
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"briaai/RMBG-2.0", trust_remote_code=True |
|
) |
|
birefnet.to("cpu") |
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
output_folder = 'output_images' |
|
if not os.path.exists(output_folder): |
|
os.makedirs(output_folder) |
|
|
|
def fn(image): |
|
im = load_img(image, output_type="pil") |
|
im = im.convert("RGB") |
|
origin = im.copy() |
|
image = process(im) |
|
image_path = os.path.join(output_folder, "no_bg_image.png") |
|
image.save(image_path) |
|
return (image, origin), image_path |
|
|
|
@spaces.GPU |
|
def process(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cpu") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
def process_file(f): |
|
name_path = f.rsplit(".",1)[0]+".png" |
|
im = load_img(f, output_type="pil") |
|
im = im.convert("RGB") |
|
transparent = process(im) |
|
transparent.save(name_path) |
|
return name_path |
|
|
|
slider1 = ImageSlider(label="RMBG-2.0", type="pil") |
|
slider2 = ImageSlider(label="RMBG-2.0", type="pil") |
|
image = gr.Image(label="Upload an image") |
|
image2 = gr.Image(label="Upload an image",type="filepath") |
|
text = gr.Textbox(label="Paste an image URL") |
|
png_file = gr.File(label="output png file") |
|
|
|
|
|
tab1 = gr.Interface( |
|
fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], api_name="image", description="⚠️ Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding." |
|
) |
|
|
|
tab2 = gr.Interface( |
|
fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], api_name="text", description="⚠️ Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding." |
|
) |
|
|
|
tab3 = gr.Interface( |
|
process_file, inputs=image2, outputs=png_file, api_name="png", description="⚠️ Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding." |
|
) |
|
|
|
demo = gr.TabbedInterface( |
|
[tab1, tab2], ["Using Image", "Usling URL"], title="✂️ RMBG Image Background Remover ✂️", theme="Yntec/HaleyCH_Theme_Orange" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True, debug=True) |
|
|