JordiFFJ commited on
Commit
fdabe7f
1 Parent(s): f25596e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn import datasets
4
+ from sklearn.ensemble import RandomForestClassifier
5
+
6
+ st.write("""
7
+ # Simple Iris Flower Prediction App
8
+
9
+ This app predicts the **Iris flower** type!
10
+ """)
11
+
12
+ st.sidebar.header('User Input Parameters')
13
+
14
+ def user_input_features():
15
+ sepal_length = st.sidebar.slider('Sepal length', 4.3, 7.9, 5.4)
16
+ sepal_width = st.sidebar.slider('Sepal width', 2.0, 4.4, 3.4)
17
+ petal_length = st.sidebar.slider('Petal length', 1.0, 6.9, 1.3)
18
+ petal_width = st.sidebar.slider('Petal width', 0.1, 2.5, 0.2)
19
+ data = {'sepal_length': sepal_length,
20
+ 'sepal_width': sepal_width,
21
+ 'petal_length': petal_length,
22
+ 'petal_width': petal_width}
23
+ features = pd.DataFrame(data, index=[0])
24
+ return features
25
+
26
+ df = user_input_features()
27
+
28
+ st.subheader('User Input parameters')
29
+ st.write(df)
30
+
31
+ iris = datasets.load_iris()
32
+ X = iris.data
33
+ Y = iris.target
34
+
35
+ clf = RandomForestClassifier()
36
+ clf.fit(X, Y)
37
+
38
+ prediction = clf.predict(df)
39
+ prediction_proba = clf.predict_proba(df)
40
+
41
+ st.subheader('Class labels and their corresponding index number')
42
+ st.write(iris.target_names)
43
+
44
+ st.subheader('Prediction')
45
+ st.write(iris.target_names[prediction])
46
+ #st.write(prediction)
47
+
48
+ st.subheader('Prediction Probability')
49
+ st.write(prediction_proba)