File size: 4,578 Bytes
8832500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta charset="utf-8" />
</head>

<body style="margin: 0;">

<div id="p10" style="overflow: hidden; position: relative; background-color: white; width: 2200px; height: 1237px;">

<!-- Begin shared CSS values -->
<style class="shared-css" type="text/css" >
.t {
	transform-origin: bottom left;
	z-index: 2;
	position: absolute;
	white-space: pre;
	overflow: visible;
	line-height: 1.5;
}
.text-container {
	white-space: pre;
}
@supports (-webkit-touch-callout: none) {
	.text-container {
		white-space: normal;
	}
}
</style>
<!-- End shared CSS values -->


<!-- Begin inline CSS -->
<style type="text/css" >

#t1_10{left:0px;bottom:1054px;letter-spacing:-0.23px;}
#t2_10{left:0px;bottom:917px;letter-spacing:-0.24px;}
#t3_10{left:0px;bottom:781px;letter-spacing:-0.24px;}
#t4_10{left:0px;bottom:645px;letter-spacing:-0.21px;}
#t5_10{left:565px;bottom:998px;letter-spacing:0.21px;}
#t6_10{left:565px;bottom:934px;letter-spacing:0.2px;}
#t7_10{left:565px;bottom:870px;letter-spacing:0.2px;}
#t8_10{left:699px;bottom:1080px;letter-spacing:0.14px;}
#t9_10{left:565px;bottom:766px;letter-spacing:0.21px;}
#ta_10{left:861px;bottom:766px;letter-spacing:0.22px;}
#tb_10{left:565px;bottom:702px;letter-spacing:0.2px;}
#tc_10{left:101px;bottom:501px;letter-spacing:0.21px;}
#td_10{left:398px;bottom:501px;letter-spacing:0.2px;}
#te_10{left:101px;bottom:437px;letter-spacing:0.2px;}
#tf_10{left:101px;bottom:373px;letter-spacing:0.21px;}
#tg_10{left:101px;bottom:309px;letter-spacing:0.2px;}
#th_10{left:101px;bottom:245px;letter-spacing:0.21px;}
#ti_10{left:101px;bottom:181px;letter-spacing:0.21px;}

.s1_10{font-size:115px;font-family:IBMPlexSans_2d;color:#000;}
.s2_10{font-size:115px;font-family:IBMPlexSans-Bold_2l;color:#000;}
.s3_10{font-size:53px;font-family:IBMPlexSans-Italic_2o;color:#000;}
.s4_10{font-size:99px;font-family:IBMPlexSans-Bold_2l;color:#000;}
.s5_10{font-size:53px;font-family:IBMPlexSans_2d;color:#000;}
</style>
<!-- End inline CSS -->

<!-- Begin embedded font definitions -->
<style id="fonts10" type="text/css" >

@font-face {
	font-family: IBMPlexSans-Bold_2l;
	src: url("fonts/IBMPlexSans-Bold_2l.woff") format("woff");
}

@font-face {
	font-family: IBMPlexSans-Italic_2o;
	src: url("fonts/IBMPlexSans-Italic_2o.woff") format("woff");
}

@font-face {
	font-family: IBMPlexSans_2d;
	src: url("fonts/IBMPlexSans_2d.woff") format("woff");
}

</style>
<!-- End embedded font definitions -->

<!-- Begin page background -->
<div id="pg10Overlay" style="width:100%; height:100%; position:absolute; z-index:1; background-color:rgba(0,0,0,0); -webkit-user-select: none;"></div>
<div id="pg10" style="-webkit-user-select: none;"><object width="2200" height="1237" data="10/10.svg" type="image/svg+xml" id="pdf10" style="width:2200px; height:1237px; -moz-transform:scale(1); z-index: 0;"></object></div>
<!-- End page background -->


<!-- Begin text definitions (Positioned/styled in CSS) -->
<div class="text-container"><span id="t1_10" class="t s1_10">Problems </span>
<span id="t2_10" class="t s1_10">and </span>
<span id="t3_10" class="t s2_10">Proposed </span>
<span id="t4_10" class="t s2_10">Solutions </span>
<span id="t5_10" class="t s3_10">When a model has learned to focus too much on the specific </span>
<span id="t6_10" class="t s3_10">characteristics of the training data, rather than generalizing to new </span>
<span id="t7_10" class="t s3_10">situations. </span>
<span id="t8_10" class="t s4_10">2.Overfitting </span>
<span id="t9_10" class="t s5_10">Solution 1 </span><span id="ta_10" class="t s5_10">Dreambooth used prior-preservation loss, and the </span>
<span id="tb_10" class="t s5_10">ratio of prior-preservation is never easy to determine. </span>
<span id="tc_10" class="t s5_10">Solution 2 </span><span id="td_10" class="t s5_10">It is training data that caused the overfitting. Thus we use a subset of </span>
<span id="te_10" class="t s5_10">the training data to train an overfitted model, select the previous checkpoint which </span>
<span id="tf_10" class="t s5_10">and use it to generate images by prompt for a single word. These images can be </span>
<span id="tg_10" class="t s5_10">placed in the regular training data according to the word frequency ratio, and the </span>
<span id="th_10" class="t s5_10">subset of the which that caused the overfitting can be removed, and then retrain </span>
<span id="ti_10" class="t s5_10">the model from the very beginning. </span></div>
<!-- End text definitions -->


</div>
</body>
</html>