Spaces:
Runtime error
Runtime error
JuanLozada97
commited on
Commit
·
dbeb499
1
Parent(s):
9b977a4
Upload 5 files
Browse files- app.py +74 -0
- examples/img_demo.png +0 -0
- model.py +6 -0
- requirements.txt +4 -0
- sam_vit_b_01ec64.pth +3 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import base64
|
8 |
+
import json
|
9 |
+
|
10 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
|
11 |
+
from segment_anything.utils.onnx import SamOnnxModel
|
12 |
+
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from model import create_sam_model
|
16 |
+
|
17 |
+
# 1.Setup variables
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
checkpoint = "sam_vit_b_01ec64.pth"
|
20 |
+
model_type = "vit_b"
|
21 |
+
|
22 |
+
# 2.Model preparation and load save weights
|
23 |
+
medsam_model = create_sam_model(model_type,checkpoint,device)
|
24 |
+
mask_generator = SamAutomaticMaskGenerator(medsam_model)
|
25 |
+
|
26 |
+
# 3.Predict fn
|
27 |
+
@torch.no_grad()
|
28 |
+
|
29 |
+
def predict(img) -> Tuple[Dict, float]:
|
30 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
31 |
+
"""
|
32 |
+
# Start the timer
|
33 |
+
start_time = timer()
|
34 |
+
# Transform the target image and add a batch dimension
|
35 |
+
|
36 |
+
img_np = np.array(img)
|
37 |
+
|
38 |
+
# Convierte de BGR a RGB si es necesario
|
39 |
+
image = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
|
40 |
+
|
41 |
+
masks = mask_generator.generate(image)
|
42 |
+
# Calculate the prediction time
|
43 |
+
pred_time = round(timer() - start_time, 5)
|
44 |
+
|
45 |
+
fig,ax = plt.figure(figsize=(20,20))
|
46 |
+
plt.imshow(image)
|
47 |
+
show_anns(masks)
|
48 |
+
plt.axis('off')
|
49 |
+
|
50 |
+
# Return the prediction dictionary and prediction time
|
51 |
+
return fig, pred_time
|
52 |
+
|
53 |
+
# 4. Gradio app
|
54 |
+
# Create title, description and article strings
|
55 |
+
title = "MedSam"
|
56 |
+
description = "a specialized SAM model finely tuned for the segmentation of medical images. With this app, effortlessly extract image embeddings using the model's advanced mask decoder."
|
57 |
+
article = "Created at gradio-sam-predictor-image-embedding-generator.ipynb ."
|
58 |
+
|
59 |
+
# Create examples list from "examples/" directory
|
60 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
61 |
+
|
62 |
+
# Create the Gradio demo
|
63 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
64 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
65 |
+
outputs=[gr.Plot(label="Predictions"), # what are the outputs?
|
66 |
+
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
67 |
+
examples=example_list,
|
68 |
+
title=title,
|
69 |
+
description=description,
|
70 |
+
article=article)
|
71 |
+
|
72 |
+
# Launch the demo!
|
73 |
+
demo.launch(debug=False, # print errors locally?
|
74 |
+
share=True) # generate a publically shareable URL?
|
examples/img_demo.png
ADDED
model.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from segment_anything import sam_model_registry
|
2 |
+
|
3 |
+
def create_sam_model(model_type, checkpoint, device: str = "cpu"):
|
4 |
+
medsam_model = sam_model_registry[model_type](checkpoint=checkpoint)
|
5 |
+
medsam_model = medsam_model.to(device)
|
6 |
+
return medsam_model
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.0
|
2 |
+
torchvision==0.16.0
|
3 |
+
gradio==3.50.2
|
4 |
+
'git+https://github.com/facebookresearch/segment-anything.git'
|
sam_vit_b_01ec64.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912
|
3 |
+
size 375042383
|