File size: 5,899 Bytes
c6ccb48
 
 
 
 
 
af603ca
 
 
 
a413c26
 
c6ccb48
 
 
 
 
 
 
c90b2b6
c6ccb48
 
 
 
 
 
af603ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ccb48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a413c26
c6ccb48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a413c26
 
 
 
c6ccb48
 
a413c26
c6ccb48
 
 
 
 
 
 
 
 
 
 
 
 
 
a413c26
 
c6ccb48
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import os
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from typing import Tuple, Dict
from timeit import default_timer as timer
from skimage import io, transform
import os
import base64
import json

import torch.nn.functional as F

from model import create_sam_model

# 1.Setup variables
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "sam_vit_b_01ec64.pth"
model_type = "vit_b"

# 2.Model preparation and load save weights
medsam_model = create_sam_model(model_type,checkpoint,device)

# 3.Predict fn
def show_mask(mask, ax):
    color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))

@torch.no_grad()
def medsam_inference(medsam_model, img_embed, box_1024, H, W):
    box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=img_embed.device)
    if len(box_torch.shape) == 2:
        box_torch = box_torch[:, None, :]  # (B, 1, 4)

    sparse_embeddings, dense_embeddings = medsam_model.prompt_encoder(
        points=None,
        boxes=box_torch,
        masks=None,
    )
    low_res_logits, _ = medsam_model.mask_decoder(
        image_embeddings=img_embed,  # (B, 256, 64, 64)
        image_pe=medsam_model.prompt_encoder.get_dense_pe(),  # (1, 256, 64, 64)
        sparse_prompt_embeddings=sparse_embeddings,  # (B, 2, 256)
        dense_prompt_embeddings=dense_embeddings,  # (B, 256, 64, 64)
        multimask_output=False,
    )

    low_res_pred = torch.sigmoid(low_res_logits)  # (1, 1, 256, 256)

    low_res_pred = F.interpolate(
        low_res_pred,
        size=(H, W),
        mode="bilinear",
        align_corners=False,
    )  # (1, 1, gt.shape)
    low_res_pred = low_res_pred.squeeze().cpu().numpy()  # (256, 256)
    medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
    return medsam_seg

def predict(img) -> Tuple[Dict, float]:
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = timer()
    # Transform the target image and add a batch dimension

    img_np = np.array(img)
    # Convierte de BGR a RGB si es necesario
    if img_np.shape[-1] == 3:  # Asegura que sea una imagen en color
      img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)

    if len(img_np.shape) == 2:
        img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
    else:
        img_3c = img_np
    H, W, _ = img_3c.shape
    # %% image preprocessing
    img_1024 = transform.resize(
        img_3c, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
    ).astype(np.uint8)
    img_1024 = (img_1024 - img_1024.min()) / np.clip(
        img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None
    )  # normalize to [0, 1], (H, W, 3)
    # convert the shape to (3, H, W)
    img_1024_tensor = (
        torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(device)
    )

    # Put model into evaluation mode and turn on inference mode
    medsam_model.eval()
    with torch.inference_mode():
      image_embedding = medsam_model.image_encoder(img_1024_tensor)  # (1, 256, 64, 64)
    # define the inputbox  
    input_box = np.array([[125, 275, 190, 350]])
    # transfer box_np t0 1024x1024 scale
    box_1024 = input_box / np.array([W, H, W, H]) * 1024

    medsam_seg = medsam_inference(medsam_model, image_embedding, box_1024, H, W)
    pred_time = round(timer() - start_time, 5)
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 5))
    ax[0].imshow(img_3c)
    show_box(input_box[0], ax[0])
    ax[0].set_title("Input Image and Bounding Box")
    ax[1].imshow(img_3c)
    show_mask(medsam_seg, ax[1])
    show_box(input_box[0], ax[1])
    ax[1].set_title("MedSAM Segmentation")
    # Calculate the prediction time
    image_embedding = image_embedding.cpu().numpy().tobytes()

    # Serialize the response data to JSON format
    serialized_data = json.dumps([base64.b64encode(image_embedding).decode('ascii')])

    # Return the prediction dictionary and prediction time
    return fig, pred_time,serialized_data

# 4. Gradio app
# Create title, description and article strings
title = "MedSam"
description = "a specialized SAM model finely tuned for the segmentation of medical images. With this app, effortlessly extract image embeddings using the model's advanced mask decoder."
article = "Created at gradio-sam-predictor-image-embedding-generator.ipynb ."

# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]

# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=gr.Image(type="pil"), # what are the inputs?
                    outputs=[gr.Plot(label="Predictions"), # what are the outputs?
                            gr.Number(label="Prediction time (s)"),
                            gr.JSON(label="Embedding Image")], # our fn has two outputs, therefore we have two outputs
                    examples=example_list,
                    title=title,
                    description=description,
                    article=article)

# Launch the demo!
demo.launch(debug=False, # print errors locally?
            share=True) # generate a publically shareable URL?