Spaces:
Sleeping
Sleeping
Commit
·
3617b5f
1
Parent(s):
de37443
first commit
Browse files- app.py +60 -0
- models/la_muse/compressed.model +3 -0
- models/mosaic/compressed.model +3 -0
- models/starry_night_crop/compressed.model +3 -0
- models/wave_crop/compressed.model +3 -0
- network.py +356 -0
- requirements.txt +5 -0
- style.py +258 -0
- utils.py +32 -0
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import utils
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from network import ImageTransformNet_dpws
|
7 |
+
from torch.autograd import Variable
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
with gr.Blocks() as demo:
|
11 |
+
with gr.Row():
|
12 |
+
gr.HTML('<h1 style="text-align: center;">스타일 변환기</h1>')
|
13 |
+
|
14 |
+
with gr.Row():
|
15 |
+
with gr.Column():
|
16 |
+
style_radio = gr.Radio(['La muse', 'Mosaic', 'Starry Night Crop', 'Wave Crop'], label='원하는 스타일 선택!')
|
17 |
+
image_input = gr.Image(label='콘텐츠 이미지')
|
18 |
+
convert_button = gr.Button('변환!')
|
19 |
+
|
20 |
+
with gr.Column():
|
21 |
+
result_image = gr.Image(label='결과 이미지')
|
22 |
+
|
23 |
+
def transform_image(style, img):
|
24 |
+
dtype = torch.FloatTensor
|
25 |
+
|
26 |
+
# content image
|
27 |
+
img_transform_512 = transforms.Compose([
|
28 |
+
# transforms.Scale(512), # scale shortest side to image_size
|
29 |
+
transforms.Resize(512), # scale shortest side to image_size
|
30 |
+
# transforms.CenterCrop(512), # crop center image_size out
|
31 |
+
transforms.ToTensor(), # turn image from [0-255] to [0-1]
|
32 |
+
utils.normalize_tensor_transform() # normalize with ImageNet values
|
33 |
+
])
|
34 |
+
|
35 |
+
content = Image.fromarray(img)
|
36 |
+
content = img_transform_512(content)
|
37 |
+
content = content.unsqueeze(0)
|
38 |
+
# content = Variable(content).type(dtype)
|
39 |
+
content = Variable(content.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
|
40 |
+
|
41 |
+
# load style model
|
42 |
+
model_folder_name = '_'.join(style.lower().split())
|
43 |
+
model_path = 'models/' + model_folder_name + '/compressed.model'
|
44 |
+
checkpoint_lw = torch.load(model_path)
|
45 |
+
|
46 |
+
style_model = ImageTransformNet_dpws().type(dtype)
|
47 |
+
style_model.load_state_dict((checkpoint_lw))
|
48 |
+
|
49 |
+
# process input image
|
50 |
+
stylized = style_model(content).cpu()
|
51 |
+
utils.save_image('results.jpg', stylized.data[0])
|
52 |
+
return 'results.jpg'
|
53 |
+
|
54 |
+
convert_button.click(
|
55 |
+
transform_image,
|
56 |
+
inputs=[style_radio, image_input],
|
57 |
+
outputs=[result_image],
|
58 |
+
)
|
59 |
+
|
60 |
+
demo.launch()
|
models/la_muse/compressed.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b4d90ccfbf9679128254df891aec7a2a460f34df5490ad370bb1d3e6a32cc17
|
3 |
+
size 92080
|
models/mosaic/compressed.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24ff3368b90ba4ce65e0efaf97876bca4148958dd506e84a568a9425142cd314
|
3 |
+
size 92080
|
models/starry_night_crop/compressed.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e5a3665567b07638dcc713c1d8ea30c1148824ebce3eade677b07181787a03d
|
3 |
+
size 92080
|
models/wave_crop/compressed.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d0974a83e9d62be50d636e80c3be48a90893376c22da6dc1cd004697616eeed
|
3 |
+
size 92080
|
network.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
# Conv Layer
|
5 |
+
class ConvLayer(nn.Module):
|
6 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1):
|
7 |
+
super(ConvLayer, self).__init__()
|
8 |
+
paddings = kernel_size // 2
|
9 |
+
self.reflection_pad = nn.ReflectionPad2d(paddings)
|
10 |
+
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, groups=groups) #, padding)
|
11 |
+
# self.in_d = nn.InstanceNorm2d(out_channels, affine=True)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
out = self.reflection_pad(x)
|
15 |
+
out = self.conv2d(out)
|
16 |
+
return out
|
17 |
+
|
18 |
+
|
19 |
+
class ConvLayer_dpws(nn.Module):
|
20 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
21 |
+
super(ConvLayer_dpws, self).__init__()
|
22 |
+
self.conv1 = ConvLayer(in_channels, in_channels, kernel_size, stride=stride, groups=in_channels)
|
23 |
+
self.in_1d = nn.InstanceNorm2d(in_channels, affine=True)
|
24 |
+
self.conv2 = ConvLayer(in_channels, out_channels, kernel_size=1, stride=1)
|
25 |
+
self.in_2d = nn.InstanceNorm2d(out_channels, affine=True)
|
26 |
+
self.relu = nn.ReLU()
|
27 |
+
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
out = self.in_1d(self.conv1(x))
|
31 |
+
out = self.relu(self.in_2d(self.conv2(out)))
|
32 |
+
return out
|
33 |
+
|
34 |
+
|
35 |
+
class ConvLayer_dpws_last(nn.Module):
|
36 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
37 |
+
super(ConvLayer_dpws_last, self).__init__()
|
38 |
+
self.conv1 = ConvLayer(in_channels, in_channels, kernel_size, stride=stride, groups=in_channels)
|
39 |
+
self.in_1d = nn.InstanceNorm2d(in_channels, affine=True)
|
40 |
+
self.conv2 = ConvLayer(in_channels, out_channels, kernel_size=1, stride=1)
|
41 |
+
# self.in_2d = nn.InstanceNorm2d(out_channels, affine=True)
|
42 |
+
# self.relu = nn.ReLU()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
out = self.in_1d(self.conv1(x))
|
46 |
+
# out = self.relu(self.in_2d(self.conv2(out)))
|
47 |
+
out = self.conv2(out)
|
48 |
+
return out
|
49 |
+
|
50 |
+
# Upsample Conv Layer
|
51 |
+
class UpsampleConvLayer(nn.Module):
|
52 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
|
53 |
+
super(UpsampleConvLayer, self).__init__()
|
54 |
+
self.upsample = upsample
|
55 |
+
if upsample:
|
56 |
+
self.upsample = nn.Upsample(scale_factor=upsample, mode='nearest')
|
57 |
+
reflection_padding = kernel_size // 2
|
58 |
+
self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
|
59 |
+
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
60 |
+
# self.in_d = nn.InstanceNorm2d(out_channels, affine=True)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
if self.upsample:
|
64 |
+
x = self.upsample(x)
|
65 |
+
out = self.reflection_pad(x)
|
66 |
+
out = self.conv2d(out)
|
67 |
+
return out
|
68 |
+
|
69 |
+
|
70 |
+
class UpsampleConvLayer_dpws(nn.Module):
|
71 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
|
72 |
+
super(UpsampleConvLayer_dpws, self).__init__()
|
73 |
+
self.upsample = upsample
|
74 |
+
if upsample:
|
75 |
+
self.upsample = nn.Upsample(scale_factor=upsample, mode='nearest')
|
76 |
+
self.conv1 = ConvLayer(in_channels, in_channels, kernel_size, stride, groups=in_channels)
|
77 |
+
self.in1 = nn.InstanceNorm2d(in_channels, affine=True )
|
78 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1)
|
79 |
+
self.in2 = nn.InstanceNorm2d(out_channels, affine=True )
|
80 |
+
self.relu = nn.ReLU()
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
if self.upsample:
|
84 |
+
x = self.upsample(x)
|
85 |
+
# out = self.reflection_pad(x)
|
86 |
+
# out = self.conv2d(out)
|
87 |
+
out = self.relu(self.in1(self.conv1(x)))
|
88 |
+
out = self.in2(self.conv2(out))
|
89 |
+
return out
|
90 |
+
|
91 |
+
|
92 |
+
class DeConvLayer(nn.Module):
|
93 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
94 |
+
super(DeConvLayer, self).__init__()
|
95 |
+
|
96 |
+
# reflection_padding = kernel_size // 2
|
97 |
+
# self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
|
98 |
+
self.deconv2d = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding=1, output_padding=1)
|
99 |
+
def forward(self, x):
|
100 |
+
# out = self.reflection_pad(x)
|
101 |
+
out = self.deconv2d(x)
|
102 |
+
return out
|
103 |
+
|
104 |
+
# Residual Block
|
105 |
+
# adapted from pytorch tutorial
|
106 |
+
# https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-
|
107 |
+
# intermediate/deep_residual_network/main.py
|
108 |
+
class ResidualBlock(nn.Module):
|
109 |
+
def __init__(self, channels):
|
110 |
+
super(ResidualBlock, self).__init__()
|
111 |
+
|
112 |
+
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
113 |
+
self.in1 = nn.InstanceNorm2d(channels, affine=True)
|
114 |
+
self.relu = nn.ReLU()
|
115 |
+
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
116 |
+
self.in2 = nn.InstanceNorm2d(channels, affine=True)
|
117 |
+
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
residual = x
|
121 |
+
out = self.relu(self.in1(self.conv1(x)))
|
122 |
+
# out = self.relu(self.in2(self.conv2(out)))
|
123 |
+
out = self.in2(self.conv2(out))
|
124 |
+
# out = self.relu(self.conv2(out))
|
125 |
+
# out = self.conv2(out)
|
126 |
+
out = out + residual
|
127 |
+
# out = self.relu(out)
|
128 |
+
|
129 |
+
return out
|
130 |
+
|
131 |
+
|
132 |
+
class ResidualBlock_depthwise(nn.Module):
|
133 |
+
def __init__(self, channels):
|
134 |
+
super(ResidualBlock_depthwise, self).__init__()
|
135 |
+
|
136 |
+
# ########################## deptwise ###########################################
|
137 |
+
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1, groups=channels)
|
138 |
+
self.in1 = nn.InstanceNorm2d(channels, affine=True )
|
139 |
+
self.conv2 = nn.Conv2d(channels, channels, kernel_size=1, stride=1)
|
140 |
+
self.in2 = nn.InstanceNorm2d(channels, affine=True )
|
141 |
+
|
142 |
+
self.conv3 = ConvLayer(channels, channels, kernel_size=3, stride=1, groups=channels)
|
143 |
+
self.in3 = nn.InstanceNorm2d(channels, affine=True )
|
144 |
+
self.conv4 = nn.Conv2d(channels, channels, kernel_size=1, stride=1)
|
145 |
+
self.in4 = nn.InstanceNorm2d(channels, affine=True )
|
146 |
+
|
147 |
+
self.relu = nn.ReLU()
|
148 |
+
self.prelu = nn.PReLU()
|
149 |
+
|
150 |
+
def forward(self, x):
|
151 |
+
|
152 |
+
# ############### DEPTWISE ###################
|
153 |
+
# residual = x
|
154 |
+
# out = self.relu(self.in1(self.conv1(x)))
|
155 |
+
# out = self.relu(self.in2(self.conv2(out)))
|
156 |
+
# out = self.relu(self.in3(self.conv3(out)))
|
157 |
+
# out = self.relu(self.in4(self.conv4(out)))
|
158 |
+
# out = out + residual
|
159 |
+
|
160 |
+
# # ################## v1 ####################
|
161 |
+
# residual = x
|
162 |
+
# out = self.in1(self.conv1(x))
|
163 |
+
# out = self.relu(self.in2(self.conv2(out)))
|
164 |
+
# out = self.in3(self.conv3(out))
|
165 |
+
# out = self.in4(self.conv4(out))
|
166 |
+
# out = out + residual
|
167 |
+
# out = self.relu(out)
|
168 |
+
|
169 |
+
# ################## v2 #################### √
|
170 |
+
residual = x
|
171 |
+
out = self.in1(self.conv1(x))
|
172 |
+
out = self.relu(self.in2(self.conv2(out)))
|
173 |
+
out = self.in3(self.conv3(out))
|
174 |
+
out = self.in4(self.conv4(out))
|
175 |
+
out = out + residual
|
176 |
+
|
177 |
+
# ################## v3 ####################
|
178 |
+
# residual = x
|
179 |
+
# out = self.conv1(x)
|
180 |
+
# out = self.relu(self.in2(self.conv2(out)))
|
181 |
+
# out = self.conv3(out)
|
182 |
+
# out = self.in4(self.conv4(out))
|
183 |
+
# out = out + residual
|
184 |
+
|
185 |
+
# ################## v4 ####################
|
186 |
+
# residual = x
|
187 |
+
# out = self.in1(self.conv1(x))
|
188 |
+
# out = self.relu(self.in2(self.conv2(out)))
|
189 |
+
# out = self.in3(self.conv3(out))
|
190 |
+
# out = self.relu(self.in4(self.conv4(out)))
|
191 |
+
# out = out + residual
|
192 |
+
|
193 |
+
return out
|
194 |
+
|
195 |
+
|
196 |
+
# Image Transform Network
|
197 |
+
class ImageTransformNet(nn.Module):
|
198 |
+
def __init__(self):
|
199 |
+
super(ImageTransformNet, self).__init__()
|
200 |
+
|
201 |
+
# nonlineraity
|
202 |
+
self.relu = nn.ReLU()
|
203 |
+
self.tanh = nn.Tanh()
|
204 |
+
|
205 |
+
# encoding layers
|
206 |
+
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
|
207 |
+
self.in1_e = nn.InstanceNorm2d(32, affine=True )
|
208 |
+
|
209 |
+
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
|
210 |
+
self.in2_e = nn.InstanceNorm2d(64, affine=True )
|
211 |
+
|
212 |
+
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
|
213 |
+
self.in3_e = nn.InstanceNorm2d(128, affine=True )
|
214 |
+
|
215 |
+
# residual layers
|
216 |
+
self.res1 = ResidualBlock(128)
|
217 |
+
self.res2 = ResidualBlock(128)
|
218 |
+
self.res3 = ResidualBlock(128)
|
219 |
+
self.res4 = ResidualBlock(128)
|
220 |
+
self.res5 = ResidualBlock(128)
|
221 |
+
# self.res6 = ResidualBlock(128)
|
222 |
+
|
223 |
+
# decoding layers
|
224 |
+
# TODO:
|
225 |
+
# self.deconv3 = DeConvLayer(128, 64, kernel_size=3, stride=2)
|
226 |
+
self.deconv3 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
|
227 |
+
self.in3_d = nn.InstanceNorm2d(64, affine=True )
|
228 |
+
|
229 |
+
# self.deconv2 = DeConvLayer(64, 32, kernel_size=3, stride=2)
|
230 |
+
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
|
231 |
+
self.in2_d = nn.InstanceNorm2d(32, affine=True )
|
232 |
+
|
233 |
+
self.deconv1 = ConvLayer(32, 3, kernel_size=9, stride=1)
|
234 |
+
self.in1_d = nn.InstanceNorm2d(3, affine=True )
|
235 |
+
|
236 |
+
def forward(self, x):
|
237 |
+
# encode
|
238 |
+
y = self.relu(self.in1_e(self.conv1(x)))
|
239 |
+
y = self.relu(self.in2_e(self.conv2(y)))
|
240 |
+
y = self.relu(self.in3_e(self.conv3(y)))
|
241 |
+
# y = self.relu(self.conv1(x))
|
242 |
+
# y = self.relu(self.conv2(y))
|
243 |
+
# y = self.relu(self.conv3(y))
|
244 |
+
y_downsample = y
|
245 |
+
|
246 |
+
# residual layers
|
247 |
+
y = self.res1(y)
|
248 |
+
y = self.res2(y)
|
249 |
+
y = self.res3(y)
|
250 |
+
y = self.res4(y)
|
251 |
+
y = self.res5(y)
|
252 |
+
|
253 |
+
y_upsample = y
|
254 |
+
# decode
|
255 |
+
y = self.relu(self.in3_d(self.deconv3(y)))
|
256 |
+
y = self.relu(self.in2_d(self.deconv2(y)))
|
257 |
+
# y = self.relu(self.deconv3(y))
|
258 |
+
# y = self.relu(self.deconv2(y))
|
259 |
+
# y = self.tanh(self.in1_d(self.deconv1(y)))
|
260 |
+
y = self.deconv1(y)
|
261 |
+
|
262 |
+
# return y, y_downsample, y_upsample
|
263 |
+
return y
|
264 |
+
|
265 |
+
|
266 |
+
ALAPHA_1 = 0.25
|
267 |
+
ALAPHA_2 = 0.25
|
268 |
+
# ALAPHA_1 = 0.5
|
269 |
+
# ALAPHA_2 = 0.5
|
270 |
+
class ImageTransformNet_dpws(nn.Module):
|
271 |
+
def __init__(self):
|
272 |
+
super(ImageTransformNet_dpws, self).__init__()
|
273 |
+
|
274 |
+
# nonlineraity
|
275 |
+
self.relu = nn.ReLU()
|
276 |
+
self.tanh = nn.Tanh()
|
277 |
+
|
278 |
+
# encoding layers
|
279 |
+
self.conv1 = ConvLayer_dpws(3, int(32*ALAPHA_1), kernel_size=9, stride=1)
|
280 |
+
# self.in1_e = nn.InstanceNorm2d(int(32*ALAPHA_1), affine=True )
|
281 |
+
|
282 |
+
self.conv2 = ConvLayer_dpws(int(32*ALAPHA_1), int(64*ALAPHA_1), kernel_size=3, stride= 2)
|
283 |
+
self.conv3 = ConvLayer_dpws(int(64*ALAPHA_1), int(128*ALAPHA_2), kernel_size=3, stride= 2)
|
284 |
+
|
285 |
+
# residual layers
|
286 |
+
self.res1 = ResidualBlock_depthwise(int(128*ALAPHA_2))
|
287 |
+
self.res2 = ResidualBlock_depthwise(int(128*ALAPHA_2))
|
288 |
+
self.res3 = ResidualBlock_depthwise(int(128*ALAPHA_2))
|
289 |
+
self.res4 = ResidualBlock_depthwise(int(128*ALAPHA_2))
|
290 |
+
self.res5 = ResidualBlock_depthwise(int(128*ALAPHA_2))
|
291 |
+
# self.res6 = ResidualBlock_depthwise(128)
|
292 |
+
|
293 |
+
# decoding layers
|
294 |
+
# TODO:
|
295 |
+
# self.deconv3 = DeConvLayer(128, 64, kernel_size=3, stride=2)
|
296 |
+
self.deconv3 = UpsampleConvLayer_dpws(int(128*ALAPHA_2), int(64*ALAPHA_1), kernel_size=3, stride=1, upsample=2)
|
297 |
+
# self.in3_d = nn.InstanceNorm2d(int(64*ALAPHA_1), affine=True )
|
298 |
+
|
299 |
+
# self.deconv2 = DeConvLayer(64, 32, kernel_size=3, stride=2)
|
300 |
+
self.deconv2 = UpsampleConvLayer_dpws(int(64*ALAPHA_1), int(32*ALAPHA_1), kernel_size=3, stride=1, upsample=2)
|
301 |
+
# self.in2_d = nn.InstanceNorm2d(32, affine=True )
|
302 |
+
|
303 |
+
self.deconv1 = ConvLayer_dpws_last(int(32*ALAPHA_1), 3, kernel_size=9, stride=1)
|
304 |
+
# self.deconv1 = ConvLayer_dpws_last(int(32*ALAPHA_1), 3, kernel_size=9, stride=1)
|
305 |
+
# self.in1_d = nn.InstanceNorm2d(3, affine=True )
|
306 |
+
|
307 |
+
def forward(self, x):
|
308 |
+
# encode
|
309 |
+
# y = self.relu(self.in1_e(self.conv1(x)))
|
310 |
+
y = self.conv1(x)
|
311 |
+
y = self.conv2(y)
|
312 |
+
y = self.conv3(y)
|
313 |
+
y_downsample = y
|
314 |
+
|
315 |
+
# y = self.relu(self.in2_e(self.conv2(y)))
|
316 |
+
# y = self.relu(self.in3_e(self.conv3(y)))
|
317 |
+
# residual layers
|
318 |
+
y = self.res1(y)
|
319 |
+
y = self.res2(y)
|
320 |
+
y = self.res3(y)
|
321 |
+
y = self.res4(y)
|
322 |
+
y = self.res5(y)
|
323 |
+
# y = self.res6(y)
|
324 |
+
y_upsample = y
|
325 |
+
|
326 |
+
# decode
|
327 |
+
y = self.deconv3(y)
|
328 |
+
y = self.deconv2(y)
|
329 |
+
y = self.deconv1(y)
|
330 |
+
|
331 |
+
# return y, y_downsample, y_upsample
|
332 |
+
return y
|
333 |
+
|
334 |
+
class distiller_1(nn.Module):
|
335 |
+
def __init__(self):
|
336 |
+
super(distiller_1, self).__init__()
|
337 |
+
|
338 |
+
self.conv = nn.Conv2d(128, int(128*ALAPHA_2), kernel_size=1, stride=1)
|
339 |
+
|
340 |
+
def forward(self, x):
|
341 |
+
# encode
|
342 |
+
y = self.conv(x)
|
343 |
+
|
344 |
+
return y
|
345 |
+
|
346 |
+
class distiller_2(nn.Module):
|
347 |
+
def __init__(self):
|
348 |
+
super(distiller_2, self).__init__()
|
349 |
+
|
350 |
+
self.conv = nn.Conv2d(128, int(128*ALAPHA_2), kernel_size=1, stride=1)
|
351 |
+
|
352 |
+
def forward(self, x):
|
353 |
+
# encode
|
354 |
+
y = self.conv(x)
|
355 |
+
|
356 |
+
return y
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
torchvision==0.13.1
|
3 |
+
numpy==1.24.0
|
4 |
+
torchsummary
|
5 |
+
ptflops
|
style.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
import time
|
6 |
+
import collections
|
7 |
+
|
8 |
+
from torch.autograd import Variable
|
9 |
+
from torch.optim import Adam
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from torchvision import datasets
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
import utils
|
15 |
+
from network import ImageTransformNet, ImageTransformNet_dpws
|
16 |
+
from vgg import Vgg16
|
17 |
+
|
18 |
+
# Global Variables
|
19 |
+
IMAGE_SIZE = 256
|
20 |
+
BATCH_SIZE = 4
|
21 |
+
LEARNING_RATE = 1e-3
|
22 |
+
EPOCHS = 2
|
23 |
+
|
24 |
+
# STYLE_WEIGHT = 9.2e3
|
25 |
+
# STYLE_WEIGHT = 8e4
|
26 |
+
STYLE_WEIGHT = 7e4
|
27 |
+
# STYLE_WEIGHT = 0
|
28 |
+
# CONTENT_WEIGHT = 1e-2
|
29 |
+
# CONTENT_WEIGHT = 0.15
|
30 |
+
CONTENT_WEIGHT = 0.1
|
31 |
+
L1_WEIGHT = 1
|
32 |
+
|
33 |
+
def train(args):
|
34 |
+
# GPU enabling
|
35 |
+
if (args.gpu != None):
|
36 |
+
use_cuda = True
|
37 |
+
dtype = torch.cuda.FloatTensor
|
38 |
+
torch.cuda.set_device(args.gpu)
|
39 |
+
print("Current device: %d" %torch.cuda.current_device())
|
40 |
+
|
41 |
+
# visualization of training controlled by flag
|
42 |
+
visualize = (args.visualize != None)
|
43 |
+
if (visualize):
|
44 |
+
img_transform_512 = transforms.Compose([
|
45 |
+
transforms.Scale(512), # scale shortest side to image_size
|
46 |
+
# transforms.CenterCrop(512), # crop center image_size out
|
47 |
+
transforms.ToTensor(), # turn image from [0-255] to [0-1]
|
48 |
+
utils.normalize_tensor_transform() # normalize with ImageNet values
|
49 |
+
])
|
50 |
+
|
51 |
+
|
52 |
+
testImage_maine = utils.load_image(args.test_image)
|
53 |
+
testImage_maine = img_transform_512(testImage_maine)
|
54 |
+
testImage_maine = Variable(testImage_maine.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
|
55 |
+
test_name = os.path.split(args.test_image)[-1].split('.')[0]
|
56 |
+
|
57 |
+
# define network
|
58 |
+
image_transformer_dpws = ImageTransformNet_dpws().type(dtype)
|
59 |
+
# paras = [image_transformer_dpws.parameters()]
|
60 |
+
optimizer = Adam(image_transformer_dpws.parameters(), LEARNING_RATE)
|
61 |
+
|
62 |
+
loss_mse = torch.nn.MSELoss()
|
63 |
+
loss_l1 = torch.nn.L1Loss()
|
64 |
+
|
65 |
+
vgg = Vgg16().type(dtype)
|
66 |
+
image_transformer = ImageTransformNet().type(dtype)
|
67 |
+
image_transformer.load_state_dict(torch.load(args.load_path))
|
68 |
+
|
69 |
+
# get training dataset
|
70 |
+
dataset_transform = transforms.Compose([
|
71 |
+
transforms.Scale(IMAGE_SIZE), # scale shortest side to image_size
|
72 |
+
transforms.CenterCrop(IMAGE_SIZE), # crop center image_size out
|
73 |
+
transforms.ToTensor(), # turn image from [0-255] to [0-1]
|
74 |
+
utils.normalize_tensor_transform() # normalize with ImageNet values
|
75 |
+
])
|
76 |
+
train_dataset = datasets.ImageFolder(args.dataset, dataset_transform)
|
77 |
+
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE)
|
78 |
+
|
79 |
+
# style image
|
80 |
+
style_transform = transforms.Compose([
|
81 |
+
transforms.ToTensor(), # turn image from [0-255] to [0-1]
|
82 |
+
utils.normalize_tensor_transform() # normalize with ImageNet values
|
83 |
+
])
|
84 |
+
style = utils.load_image(args.style_image)
|
85 |
+
style = style_transform(style)
|
86 |
+
style = Variable(style.repeat(BATCH_SIZE, 1, 1, 1)).type(dtype)
|
87 |
+
style_name = os.path.split(args.style_image)[-1].split('.')[0]
|
88 |
+
|
89 |
+
# calculate gram matrices for style feature layer maps we care about
|
90 |
+
style_features = vgg(style)
|
91 |
+
style_gram = [utils.gram(fmap) for fmap in style_features]
|
92 |
+
|
93 |
+
for e in range(EPOCHS):
|
94 |
+
|
95 |
+
# track values for...
|
96 |
+
img_count = 0
|
97 |
+
aggregate_style_loss = 0.0
|
98 |
+
aggregate_content_loss = 0.0
|
99 |
+
aggregate_l1_loss = 0.0
|
100 |
+
# aggregate_tv_loss = 0.0
|
101 |
+
|
102 |
+
# train network
|
103 |
+
image_transformer_dpws.train()
|
104 |
+
for batch_num, (x, label) in enumerate(train_loader):
|
105 |
+
img_batch_read = len(x)
|
106 |
+
img_count += img_batch_read
|
107 |
+
|
108 |
+
# zero out gradients
|
109 |
+
optimizer.zero_grad()
|
110 |
+
|
111 |
+
# input batch to transformer network
|
112 |
+
|
113 |
+
x = Variable(x).type(dtype)
|
114 |
+
y_hat = image_transformer_dpws(x)
|
115 |
+
y_label = image_transformer(x)
|
116 |
+
|
117 |
+
# get vgg features
|
118 |
+
y_c_features = vgg(x)
|
119 |
+
y_hat_features = vgg(y_hat)
|
120 |
+
|
121 |
+
# calculate style loss
|
122 |
+
y_hat_gram = [utils.gram(fmap) for fmap in y_hat_features]
|
123 |
+
style_loss = 0.0
|
124 |
+
|
125 |
+
for j in range(4):
|
126 |
+
style_loss += loss_mse(y_hat_gram[j], style_gram[j][:img_batch_read])
|
127 |
+
style_loss = STYLE_WEIGHT*style_loss
|
128 |
+
aggregate_style_loss += style_loss.data.item()
|
129 |
+
|
130 |
+
# calculate content loss (h_relu_2_2)
|
131 |
+
recon = y_c_features[1]
|
132 |
+
recon_hat = y_hat_features[1]
|
133 |
+
content_loss = CONTENT_WEIGHT*loss_mse(recon_hat, recon)
|
134 |
+
aggregate_content_loss += content_loss.data.item()
|
135 |
+
|
136 |
+
# calculate l1 loss
|
137 |
+
l1_loss = L1_WEIGHT*loss_mse(y_hat, y_label)
|
138 |
+
aggregate_l1_loss += l1_loss.data.item()
|
139 |
+
|
140 |
+
# total loss
|
141 |
+
# total_loss = style_loss + content_loss + tv_loss + l1_loss + dis_loss
|
142 |
+
total_loss = style_loss + l1_loss + content_loss
|
143 |
+
|
144 |
+
# backprop
|
145 |
+
total_loss.backward()
|
146 |
+
optimizer.step()
|
147 |
+
|
148 |
+
# print out status message
|
149 |
+
if ((batch_num + 1) % 100 == 0):
|
150 |
+
status = "{} Epoch {}: [{}/{}] Batch:[{}] agg_style: {:.6f} agg_l1: {:.6f} agg_content: {:.6f} ".format(
|
151 |
+
time.ctime(), e + 1, img_count, len(train_dataset), batch_num+1,
|
152 |
+
aggregate_style_loss/(batch_num+1.0), aggregate_l1_loss/(batch_num+1.0), aggregate_content_loss/(batch_num+1.0)
|
153 |
+
)
|
154 |
+
print(status)
|
155 |
+
|
156 |
+
if ((batch_num + 1) % 5000 == 0) and (visualize):
|
157 |
+
image_transformer_dpws.eval()
|
158 |
+
|
159 |
+
if not os.path.exists("visualization"):
|
160 |
+
os.makedirs("visualization")
|
161 |
+
|
162 |
+
outputTestImage_maine = image_transformer_dpws(testImage_maine)
|
163 |
+
|
164 |
+
test_path = "visualization/%s/%s%d_%05d.jpg" %(style_name, test_name, e+1, batch_num+1)
|
165 |
+
utils.save_image(test_path, outputTestImage_maine.data[0].cpu())
|
166 |
+
|
167 |
+
print("images saved")
|
168 |
+
image_transformer_dpws.train()
|
169 |
+
|
170 |
+
# save model
|
171 |
+
image_transformer_dpws.eval()
|
172 |
+
|
173 |
+
if use_cuda:
|
174 |
+
image_transformer_dpws.cpu()
|
175 |
+
|
176 |
+
if not os.path.exists("models"):
|
177 |
+
os.makedirs("models")
|
178 |
+
filename = "models/%s.model" %style_name
|
179 |
+
torch.save(image_transformer_dpws.state_dict(), filename)
|
180 |
+
|
181 |
+
if use_cuda:
|
182 |
+
image_transformer_dpws.cuda()
|
183 |
+
|
184 |
+
def style_transfer(args):
|
185 |
+
# GPU enabling
|
186 |
+
if (args.gpu != None):
|
187 |
+
use_cuda = True
|
188 |
+
dtype = torch.cuda.FloatTensor
|
189 |
+
torch.cuda.set_device(args.gpu)
|
190 |
+
print("Current device: %d" %torch.cuda.current_device())
|
191 |
+
else :
|
192 |
+
dtype = torch.FloatTensor
|
193 |
+
|
194 |
+
# content image
|
195 |
+
img_transform_512 = transforms.Compose([
|
196 |
+
# transforms.Scale(512), # scale shortest side to image_size
|
197 |
+
transforms.Resize(512), # scale shortest side to image_size
|
198 |
+
# transforms.CenterCrop(512), # crop center image_size out
|
199 |
+
transforms.ToTensor(), # turn image from [0-255] to [0-1]
|
200 |
+
utils.normalize_tensor_transform() # normalize with ImageNet values
|
201 |
+
])
|
202 |
+
|
203 |
+
content = utils.load_image(args.source)
|
204 |
+
content = img_transform_512(content)
|
205 |
+
content = content.unsqueeze(0)
|
206 |
+
# content = Variable(content).type(dtype)
|
207 |
+
content = Variable(content.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
|
208 |
+
|
209 |
+
# load style model
|
210 |
+
checkpoint_lw = torch.load(args.model_path)
|
211 |
+
|
212 |
+
style_model = ImageTransformNet_dpws().type(dtype)
|
213 |
+
style_model.load_state_dict((checkpoint_lw))
|
214 |
+
|
215 |
+
# process input image
|
216 |
+
stylized = style_model(content).cpu()
|
217 |
+
utils.save_image(args.output, stylized.data[0])
|
218 |
+
|
219 |
+
|
220 |
+
def main():
|
221 |
+
parser = argparse.ArgumentParser(description='style transfer in pytorch')
|
222 |
+
subparsers = parser.add_subparsers(title="subcommands", dest="subcommand")
|
223 |
+
|
224 |
+
train_parser = subparsers.add_parser("train", help="train a model to do style transfer")
|
225 |
+
train_parser.add_argument("--style_image", type=str, required=True, help="path to a style image to train with")
|
226 |
+
train_parser.add_argument("--test_image", type=str, required=True, help="path to a test image to test with")
|
227 |
+
train_parser.add_argument("--dataset", type=str, required=True, help="path to a dataset")
|
228 |
+
train_parser.add_argument("--gpu", type=int, default=None, help="ID of GPU to be used")
|
229 |
+
train_parser.add_argument("--visualize", type=int, default=None, help="Set to 1 if you want to visualize training")
|
230 |
+
|
231 |
+
style_parser = subparsers.add_parser("transfer", help="do style transfer with a trained model")
|
232 |
+
style_parser.add_argument("--model_path", type=str, required=True, help="path to a pretrained model for a style image")
|
233 |
+
style_parser.add_argument("--source", type=str, required=True, help="path to source image")
|
234 |
+
style_parser.add_argument("--output", type=str, required=True, help="file name for stylized output image")
|
235 |
+
style_parser.add_argument("--gpu", type=int, default=None, help="ID of GPU to be used")
|
236 |
+
|
237 |
+
args = parser.parse_args()
|
238 |
+
|
239 |
+
# command
|
240 |
+
if (args.subcommand == "train"):
|
241 |
+
print("Training!")
|
242 |
+
train(args)
|
243 |
+
elif (args.subcommand == "transfer"):
|
244 |
+
print("Style transfering!")
|
245 |
+
style_transfer(args)
|
246 |
+
else:
|
247 |
+
print("invalid command")
|
248 |
+
|
249 |
+
if __name__ == '__main__':
|
250 |
+
main()
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
utils.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from torch.autograd import Variable
|
4 |
+
from torchvision import transforms
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# opens and returns image file as a PIL image (0-255)
|
8 |
+
def load_image(filename):
|
9 |
+
img = Image.open(filename)
|
10 |
+
return img
|
11 |
+
|
12 |
+
# assumes data comes in batch form (ch, h, w)
|
13 |
+
def save_image(filename, data):
|
14 |
+
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
15 |
+
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
16 |
+
img = data.clone().numpy()
|
17 |
+
img = ((img * std + mean).transpose(1, 2, 0)*255.0).clip(0, 255).astype("uint8")
|
18 |
+
img = Image.fromarray(img)
|
19 |
+
img.save(filename)
|
20 |
+
|
21 |
+
# Calculate Gram matrix (G = FF^T)
|
22 |
+
def gram(x):
|
23 |
+
(bs, ch, h, w) = x.size()
|
24 |
+
f = x.view(bs, ch, w*h)
|
25 |
+
f_T = f.transpose(1, 2)
|
26 |
+
G = f.bmm(f_T) / (ch * h * w)
|
27 |
+
return G
|
28 |
+
|
29 |
+
# using ImageNet values
|
30 |
+
def normalize_tensor_transform():
|
31 |
+
return transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
32 |
+
std=[0.229, 0.224, 0.225])
|