Spaces:
Sleeping
Sleeping
AyoubChLin
commited on
Commit
·
488f910
1
Parent(s):
6286af8
[INIT]
Browse files- .gitignore +2 -0
- app.py +96 -0
- chat/__init__.py +0 -0
- chat/hermes_llm.py +49 -0
- db/__init__.py +0 -0
- db/chroma.py +109 -0
- embedding.py +8 -0
- requirements.txt +4 -0
- vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/header.bin +3 -0
- vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/index_metadata.pickle +3 -0
- vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/length.bin +3 -0
- vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/link_lists.bin +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
vector_store/db/chroma.sqlite3
|
2 |
+
vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/data_level0.bin
|
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# # Cell 2 - Login Setup
|
3 |
+
# from huggingface_hub import login
|
4 |
+
# from dotenv import load_dotenv
|
5 |
+
# import os
|
6 |
+
# load_dotenv()
|
7 |
+
|
8 |
+
# login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), add_to_git_credential=True)
|
9 |
+
|
10 |
+
|
11 |
+
# from embedding import embeddings
|
12 |
+
# from db.chroma import load_and_setup_db,search_cases
|
13 |
+
# from chat.chat.hermes_llm import ChatManager
|
14 |
+
|
15 |
+
# VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH")
|
16 |
+
|
17 |
+
# vector_store = load_and_setup_db(VECTOR_DB_PATH,embeddings)
|
18 |
+
|
19 |
+
|
20 |
+
# query = "somthing"
|
21 |
+
|
22 |
+
# result = search_cases(vectorstore=vector_store,query=query,k=1)
|
23 |
+
# legal_chat = ChatManager(temperature=0.1)
|
24 |
+
|
25 |
+
# respose = legal_chat.get_response(legal_chat[0]['content'],query=query)
|
26 |
+
|
27 |
+
import gradio as gr
|
28 |
+
import os
|
29 |
+
from huggingface_hub import login
|
30 |
+
from dotenv import load_dotenv
|
31 |
+
from embedding import embeddings
|
32 |
+
from db.chroma import load_and_setup_db, search_cases
|
33 |
+
from chat.hermes_llm import ChatManager
|
34 |
+
|
35 |
+
# Load environment variables
|
36 |
+
load_dotenv()
|
37 |
+
|
38 |
+
# Login to Hugging Face
|
39 |
+
login(token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), add_to_git_credential=True)
|
40 |
+
|
41 |
+
# Initialize components
|
42 |
+
VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH")
|
43 |
+
vector_store = load_and_setup_db(VECTOR_DB_PATH, embeddings)
|
44 |
+
legal_chat = ChatManager(temperature=0.1)
|
45 |
+
|
46 |
+
def process_query(query, chat_history):
|
47 |
+
try:
|
48 |
+
# Search relevant cases
|
49 |
+
results = search_cases(vectorstore=vector_store, query=query, k=1)
|
50 |
+
response=None
|
51 |
+
if len(results)>0:
|
52 |
+
# Get response from chat manager
|
53 |
+
response = legal_chat.get_response(results[0]['content'], query=query)
|
54 |
+
else :
|
55 |
+
response = "No Document match"
|
56 |
+
# Update chat history
|
57 |
+
chat_history.append((query, response))
|
58 |
+
return "", chat_history
|
59 |
+
except Exception as e:
|
60 |
+
return "", chat_history + [(query, f"Error: {str(e)}")]
|
61 |
+
|
62 |
+
# Create Gradio interface
|
63 |
+
with gr.Blocks(title="Legal Chat Assistant") as demo:
|
64 |
+
gr.Markdown("# Legal Chat Assistant")
|
65 |
+
gr.Markdown("Ask questions about legal cases and get AI-powered responses.")
|
66 |
+
|
67 |
+
chatbot = gr.Chatbot(
|
68 |
+
[],
|
69 |
+
elem_id="chatbot",
|
70 |
+
bubble_full_width=False,
|
71 |
+
height=400
|
72 |
+
)
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
query_input = gr.Textbox(
|
76 |
+
placeholder="Enter your query here...",
|
77 |
+
show_label=False,
|
78 |
+
scale=4
|
79 |
+
)
|
80 |
+
submit_btn = gr.Button("Send", scale=1)
|
81 |
+
|
82 |
+
|
83 |
+
# Set up event handlers
|
84 |
+
submit_btn.click(
|
85 |
+
process_query,
|
86 |
+
inputs=[query_input, chatbot],
|
87 |
+
outputs=[query_input, chatbot]
|
88 |
+
)
|
89 |
+
query_input.submit(
|
90 |
+
process_query,
|
91 |
+
inputs=[query_input, chatbot],
|
92 |
+
outputs=[query_input, chatbot]
|
93 |
+
)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
demo.launch(share=True)
|
chat/__init__.py
ADDED
File without changes
|
chat/hermes_llm.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from langchain_community.chat_models import ChatOpenAI
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
from typing import List, Dict
|
5 |
+
import os
|
6 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
7 |
+
OPENROUTER_API_BASE = "https://openrouter.ai/api/v1"
|
8 |
+
DEFAULT_MODEL = "nousresearch/hermes-3-llama-3.1-405b:free"
|
9 |
+
|
10 |
+
class ChatManager:
|
11 |
+
def __init__(self, temperature: float = 0.7):
|
12 |
+
self.chat = ChatOpenAI(
|
13 |
+
openai_api_base=OPENROUTER_API_BASE,
|
14 |
+
openai_api_key=OPENROUTER_API_KEY,
|
15 |
+
model_name=DEFAULT_MODEL,
|
16 |
+
temperature=temperature,
|
17 |
+
)
|
18 |
+
|
19 |
+
self.system_message = """You are an advanced assistant designed to help users by retrieving the most relevant information from a predefined set of documents or cases and then providing an accurate response based on that data.
|
20 |
+
|
21 |
+
Your job is as follows:
|
22 |
+
|
23 |
+
1. When the user submits a query, match the query with the most relevant case from the database.
|
24 |
+
2. Extract only the denoised and contextually relevant text from that case.
|
25 |
+
3. Use that extracted text to answer the user's query with precision and clarity.
|
26 |
+
4. If the relevant text isn't found, let the user know that the information is not available or ask for more clarification.
|
27 |
+
5. Avoid providing information outside the scope of the retrieved text.
|
28 |
+
|
29 |
+
Always focus on relevance and clarity in your response, maintaining coherence with the user's original query."""
|
30 |
+
|
31 |
+
self.user_message = """
|
32 |
+
Context: {context}
|
33 |
+
|
34 |
+
Query: {query}
|
35 |
+
"""
|
36 |
+
|
37 |
+
self.prompt = ChatPromptTemplate.from_messages([
|
38 |
+
("system", self.system_message),
|
39 |
+
("human", self.user_message),
|
40 |
+
])
|
41 |
+
|
42 |
+
def get_response(self, context: str, query: str) -> str:
|
43 |
+
prompt_value = self.prompt.invoke({
|
44 |
+
"context": context,
|
45 |
+
"query": query
|
46 |
+
})
|
47 |
+
messages = prompt_value.to_messages()
|
48 |
+
response = self.chat(messages)
|
49 |
+
return response.content
|
db/__init__.py
ADDED
File without changes
|
db/chroma.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.vectorstores import Chroma
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from typing import List, Dict, Optional
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
def load_and_setup_db(
|
7 |
+
persist_directory: str,
|
8 |
+
embeddings
|
9 |
+
) -> Chroma:
|
10 |
+
"""
|
11 |
+
Load the previously created ChromaDB with the same embedding model.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
persist_directory: Directory where the database is stored
|
15 |
+
embedding_model_name: Name of the embedding model to use
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
Chroma: Loaded vector store
|
19 |
+
"""
|
20 |
+
|
21 |
+
# Load the existing database
|
22 |
+
vectorstore = Chroma(
|
23 |
+
embedding_function=embeddings,
|
24 |
+
persist_directory=persist_directory
|
25 |
+
)
|
26 |
+
|
27 |
+
return vectorstore
|
28 |
+
|
29 |
+
def search_cases(
|
30 |
+
vectorstore: Chroma,
|
31 |
+
query: str,
|
32 |
+
k: int = 5,
|
33 |
+
metadata_filter: Optional[Dict] = None,
|
34 |
+
score_threshold: Optional[float] = 0.0
|
35 |
+
) -> List[Dict]:
|
36 |
+
"""
|
37 |
+
Search the database for relevant cases.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vectorstore: Loaded Chroma vector store
|
41 |
+
query: Search query text
|
42 |
+
k: Number of results to return
|
43 |
+
metadata_filter: Optional filter for metadata fields
|
44 |
+
score_threshold: Minimum similarity score threshold
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
List of relevant documents with scores and metadata
|
48 |
+
"""
|
49 |
+
# Perform similarity search with metadata filtering
|
50 |
+
docs_and_scores = vectorstore.similarity_search_with_score(
|
51 |
+
query,
|
52 |
+
k=k,
|
53 |
+
filter=metadata_filter
|
54 |
+
)
|
55 |
+
|
56 |
+
# Process and filter results
|
57 |
+
results = []
|
58 |
+
for doc, score in docs_and_scores:
|
59 |
+
# Convert score to similarity (assuming distance score)
|
60 |
+
similarity = 1 - score
|
61 |
+
|
62 |
+
# Apply score threshold
|
63 |
+
if score_threshold and similarity < score_threshold:
|
64 |
+
continue
|
65 |
+
|
66 |
+
result = {
|
67 |
+
'content': doc.page_content,
|
68 |
+
'metadata': doc.metadata,
|
69 |
+
'similarity_score': round(similarity, 4)
|
70 |
+
}
|
71 |
+
results.append(result)
|
72 |
+
if len(results)==0 and len(docs_and_scores)>0:
|
73 |
+
results.append(docs_and_scores[0])
|
74 |
+
return results
|
75 |
+
|
76 |
+
# Example usage function
|
77 |
+
def search_and_display_results(
|
78 |
+
vectorstore: Chroma,
|
79 |
+
query: str,
|
80 |
+
k: int = 5,
|
81 |
+
metadata_filter: Optional[Dict] = None,
|
82 |
+
score_threshold: float = 0.7
|
83 |
+
) -> None:
|
84 |
+
"""
|
85 |
+
Search and display results in a formatted way.
|
86 |
+
"""
|
87 |
+
print(f"\nSearching for: {query}")
|
88 |
+
print("-" * 50)
|
89 |
+
|
90 |
+
results = search_cases(
|
91 |
+
vectorstore=vectorstore,
|
92 |
+
query=query,
|
93 |
+
k=k,
|
94 |
+
metadata_filter=metadata_filter,
|
95 |
+
score_threshold=score_threshold
|
96 |
+
)
|
97 |
+
|
98 |
+
if not results:
|
99 |
+
print("No matching results found.")
|
100 |
+
return
|
101 |
+
|
102 |
+
print(f"Found {len(results)} relevant matches:\n")
|
103 |
+
|
104 |
+
for i, result in enumerate(results, 1):
|
105 |
+
print(f"Match {i}:")
|
106 |
+
print(f"Similarity Score: {result['similarity_score']}")
|
107 |
+
print(f"Metadata: {result['metadata']}")
|
108 |
+
print(f"Content: {result['content'][:200]}...") # Show first 200 chars
|
109 |
+
print("-" * 50)
|
embedding.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
load_dotenv()
|
5 |
+
|
6 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
7 |
+
api_key=os.getenv("HUGGINGFACEHUB_API_TOKEN"), model_name="sentence-transformers/all-MiniLM-L6-v2"
|
8 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain_community
|
3 |
+
chromadb
|
4 |
+
python-dotenv
|
vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83384ec1ec80f415f9b29c84d9ef966930faf31d936cfa2c22eb0b0c9bf59924
|
3 |
+
size 100
|
vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29cdd64643b3a13902e63a70336a1287517f59e4873145c60c0f1179e68b795
|
3 |
+
size 752123
|
vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24281a3e8212857faa150d8b5f534cf0847f3971bd40a1144149b57c10410bbf
|
3 |
+
size 52000
|
vector_store/db/a83981c6-dd1a-4d14-9eba-0296b4da1fd2/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:667a7d6a2ad2c3ab267035a264717476a2da859dd8cde2d1565c2bfb65610908
|
3 |
+
size 110344
|