import gradio as gr import nltk import plotly.graph_objects as go from nltk.sentiment.vader import SentimentIntensityAnalyzer nltk.download("vader_lexicon") sid = SentimentIntensityAnalyzer() def sentiment_analysis(text): scores = sid.polarity_scores(text) del scores["compound"] labels = list(scores.keys()) values = list(scores.values()) colors = ['red' if label == 'neg' else 'green' if label == 'pos' else 'white' for label in labels] fig = go.Figure(go.Bar( x=values, y=labels, orientation='h', marker=dict(color=colors) )) fig.update_layout( title="Sentiment Analysis", xaxis_title="Score", yaxis_title="Sentiment", xaxis=dict(range=[0, 1]), yaxis=dict(showgrid=True), plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)' ) fig.update_xaxes(showgrid=True) fig.update_yaxes(showgrid=True) fig.write_image('sentiment_chart.png') return gr.Image('sentiment_chart.png') demo = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(lines=5, placeholder="Enter a positive or negative sentence here..."), outputs="image", title="Sentiment Analysis", description="Enter a sentence to analyze its sentiment. The model will return the sentiment scores for positive, negative, and neutral tones as a bar chart.", examples=[["This is wonderful!"], ["I hate this!"], ["It's okay, not bad."]] ) demo.launch()