File size: 10,101 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Union

from datasets import Features

from ..extras.logging import get_logger
from .data_utils import Role


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import Seq2SeqTrainingArguments

    from ..hparams import DataArguments
    from .parser import DatasetAttr


logger = get_logger(__name__)


def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]:
    r"""
    Optionally concatenates image path to dataset dir when loading from local disk.
    """
    outputs = []
    if dataset_attr.load_from in ["script", "file"]:
        for image in images:
            if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)):
                outputs.append(os.path.join(data_args.dataset_dir, image))
            else:
                outputs.append(image)

    return outputs


def convert_alpaca(
    examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
) -> Dict[str, List[Any]]:
    r"""
    Converts alpaca format dataset to the standard format.
    """
    outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
    convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
    for i in range(len(examples[dataset_attr.prompt])):
        prompt = []
        if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
            for old_prompt, old_response in examples[dataset_attr.history][i]:
                prompt.append({"role": Role.USER.value, "content": old_prompt})
                prompt.append({"role": Role.ASSISTANT.value, "content": old_response})

        content = []
        if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
            content.append(examples[dataset_attr.prompt][i])

        if dataset_attr.query and examples[dataset_attr.query][i]:
            content.append(examples[dataset_attr.query][i])

        prompt.append({"role": Role.USER.value, "content": "\n".join(content)})  # "prompt\nquery"

        if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool):  # kto example
            response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
            if examples[dataset_attr.kto_tag][i]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            dataset_attr.ranking
            and isinstance(examples[dataset_attr.chosen][i], str)
            and isinstance(examples[dataset_attr.rejected][i], str)
        ):  # pairwise example
            response = [
                {"role": Role.ASSISTANT.value, "content": examples[dataset_attr.chosen][i]},
                {"role": Role.ASSISTANT.value, "content": examples[dataset_attr.rejected][i]},
            ]
        elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str):  # normal example
            response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
        else:  # unsupervised
            response = []

        outputs["prompt"].append(prompt)
        outputs["response"].append(response)
        outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
        outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
        outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])

    return outputs


def convert_sharegpt(
    examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
) -> Dict[str, List[Any]]:
    r"""
    Converts sharegpt format dataset to the standard format.
    """
    outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
    convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
    tag_mapping = {
        dataset_attr.user_tag: Role.USER.value,
        dataset_attr.assistant_tag: Role.ASSISTANT.value,
        dataset_attr.observation_tag: Role.OBSERVATION.value,
        dataset_attr.function_tag: Role.FUNCTION.value,
        dataset_attr.system_tag: Role.SYSTEM.value,
    }
    odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
    even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
    accept_tags = (odd_tags, even_tags)
    for i, messages in enumerate(examples[dataset_attr.messages]):
        if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
            system = messages[0][dataset_attr.content_tag]
            messages = messages[1:]
        else:
            system = examples[dataset_attr.system][i] if dataset_attr.system else ""

        if len(messages) == 0:
            continue

        aligned_messages = []
        broken_data = False
        for turn_idx, message in enumerate(messages):
            if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
                logger.warning("Invalid role tag in {}.".format(messages))
                broken_data = True

            aligned_messages.append(
                {"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
            )

        if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
            dataset_attr.ranking and len(aligned_messages) % 2 == 0
        ):
            logger.warning("Invalid message count in {}.".format(messages))
            broken_data = True

        if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool):  # kto example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]
            if examples[dataset_attr.kto_tag][i]:
                response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
            else:
                response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
        elif (
            dataset_attr.ranking
            and isinstance(examples[dataset_attr.chosen][i], dict)
            and isinstance(examples[dataset_attr.rejected][i], dict)
        ):  # pairwise example
            chosen = examples[dataset_attr.chosen][i]
            rejected = examples[dataset_attr.rejected][i]
            if (
                chosen[dataset_attr.role_tag] not in accept_tags[-1]
                or rejected[dataset_attr.role_tag] not in accept_tags[-1]
            ):
                logger.warning("Invalid role tag in {}.".format([chosen, rejected]))
                broken_data = True

            prompt = aligned_messages
            response = [
                {"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
                {"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
            ]
        else:  # normal example
            prompt = aligned_messages[:-1]
            response = aligned_messages[-1:]

        if broken_data:
            logger.warning("Skipping this abnormal example.")
            continue

        outputs["prompt"].append(prompt)
        outputs["response"].append(response)
        outputs["system"].append(system)
        outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
        outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])

    return outputs


def align_dataset(
    dataset: Union["Dataset", "IterableDataset"],
    dataset_attr: "DatasetAttr",
    data_args: "DataArguments",
    training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
    r"""
    Aligned dataset:
        prompt: [{"role": "user", "content": "..."}] * (2T - 1)
        response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
        system: "..."
        tools: "...",
        images: [],
    """
    if dataset_attr.formatting == "alpaca":
        convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
    else:
        convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)

    column_names = list(next(iter(dataset)).keys())
    features = Features.from_dict(
        {
            "prompt": [
                {"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
            ],
            "response": [
                {"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
            ],
            "system": {"dtype": "string", "_type": "Value"},
            "tools": {"dtype": "string", "_type": "Value"},
            "images": [{"_type": "Image"}],
        }
    )
    kwargs = {}
    if not data_args.streaming:
        kwargs = dict(
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
            desc="Converting format of dataset",
        )

    return dataset.map(
        convert_func,
        batched=True,
        remove_columns=column_names,
        features=features,
        **kwargs,
    )