Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union | |
from ..extras.logging import get_logger | |
from .data_utils import Role, infer_max_len | |
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
from .formatter import SLOTS, Formatter | |
logger = get_logger(__name__) | |
class Template: | |
format_user: "Formatter" | |
format_assistant: "Formatter" | |
format_system: "Formatter" | |
format_function: "Formatter" | |
format_observation: "Formatter" | |
format_tools: "Formatter" | |
format_separator: "Formatter" | |
default_system: str | |
stop_words: List[str] | |
image_token: str | |
efficient_eos: bool | |
replace_eos: bool | |
force_system: bool | |
def encode_oneturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
cutoff_len: int = 1_000_000, | |
reserved_label_len: int = 1, | |
) -> Tuple[List[int], List[int]]: | |
r""" | |
Returns a single pair of token ids representing prompt and response respectively. | |
""" | |
encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) | |
prompt_ids = [] | |
for query_ids, resp_ids in encoded_pairs[:-1]: | |
prompt_ids += query_ids + resp_ids | |
prompt_ids = prompt_ids + encoded_pairs[-1][0] | |
answer_ids = encoded_pairs[-1][1] | |
return prompt_ids, answer_ids | |
def encode_multiturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
cutoff_len: int = 1_000_000, | |
reserved_label_len: int = 1, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Returns multiple pairs of token ids representing prompts and responses respectively. | |
""" | |
return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: system + query resp | |
Turn t: sep + query resp | |
""" | |
system = system or self.default_system | |
encoded_messages = [] | |
for i, message in enumerate(messages): | |
elements = [] | |
if i == 0 and (system or tools or self.force_system): | |
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" | |
elements += self.format_system.apply(content=(system + tool_text)) | |
elif i > 0 and i % 2 == 0: | |
elements += self.format_separator.apply() | |
if message["role"] == Role.USER.value: | |
elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) | |
elif message["role"] == Role.ASSISTANT.value: | |
elements += self.format_assistant.apply(content=message["content"]) | |
elif message["role"] == Role.OBSERVATION.value: | |
elements += self.format_observation.apply(content=message["content"]) | |
elif message["role"] == Role.FUNCTION.value: | |
elements += self.format_function.apply(content=message["content"]) | |
else: | |
raise NotImplementedError("Unexpected role: {}".format(message["role"])) | |
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) | |
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) | |
def _convert_elements_to_ids( | |
self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]] | |
) -> List[int]: | |
r""" | |
Converts elements to token ids. | |
""" | |
token_ids = [] | |
for elem in elements: | |
if isinstance(elem, str): | |
if len(elem) != 0: | |
token_ids += tokenizer.encode(elem, add_special_tokens=False) | |
elif isinstance(elem, dict): | |
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] | |
elif isinstance(elem, set): | |
if "bos_token" in elem and tokenizer.bos_token_id is not None: | |
token_ids += [tokenizer.bos_token_id] | |
elif "eos_token" in elem and tokenizer.eos_token_id is not None: | |
token_ids += [tokenizer.eos_token_id] | |
else: | |
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) | |
return token_ids | |
def _make_pairs( | |
self, | |
encoded_messages: Sequence[List[int]], | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
encoded_pairs = [] | |
total_length = 0 | |
for i in range(0, len(encoded_messages), 2): | |
if total_length >= cutoff_len: | |
break | |
max_source_len, max_target_len = infer_max_len( | |
source_len=len(encoded_messages[i]), | |
target_len=len(encoded_messages[i + 1]), | |
max_len=(cutoff_len - total_length), | |
reserved_label_len=reserved_label_len, | |
) | |
source_ids = encoded_messages[i][:max_source_len] | |
target_ids = encoded_messages[i + 1][:max_target_len] | |
total_length += len(source_ids) + len(target_ids) | |
encoded_pairs.append((source_ids, target_ids)) | |
return encoded_pairs | |
class Llama2Template(Template): | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: str, | |
tools: str, | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: system + query resp | |
Turn t: sep + query resp | |
""" | |
system = system or self.default_system | |
encoded_messages = [] | |
for i, message in enumerate(messages): | |
elements = [] | |
system_text = "" | |
if i == 0 and (system or tools or self.force_system): | |
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" | |
system_text = self.format_system.apply(content=(system + tool_text))[0] | |
elif i > 0 and i % 2 == 0: | |
elements += self.format_separator.apply() | |
if message["role"] == Role.USER.value: | |
elements += self.format_user.apply(content=system_text + message["content"]) | |
elif message["role"] == Role.ASSISTANT.value: | |
elements += self.format_assistant.apply(content=message["content"]) | |
elif message["role"] == Role.OBSERVATION.value: | |
elements += self.format_observation.apply(content=message["content"]) | |
elif message["role"] == Role.FUNCTION.value: | |
elements += self.format_function.apply(content=message["content"]) | |
else: | |
raise NotImplementedError("Unexpected role: {}".format(message["role"])) | |
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) | |
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) | |
TEMPLATES: Dict[str, Template] = {} | |
def _register_template( | |
name: str, | |
format_user: Optional["Formatter"] = None, | |
format_assistant: Optional["Formatter"] = None, | |
format_system: Optional["Formatter"] = None, | |
format_function: Optional["Formatter"] = None, | |
format_observation: Optional["Formatter"] = None, | |
format_tools: Optional["Formatter"] = None, | |
format_separator: Optional["Formatter"] = None, | |
default_system: str = "", | |
stop_words: List[str] = [], | |
image_token: str = "<image>", | |
efficient_eos: bool = False, | |
replace_eos: bool = False, | |
force_system: bool = False, | |
) -> None: | |
r""" | |
Registers a chat template. | |
To add the following chat template: | |
``` | |
[HUMAN]: | |
user prompt here | |
[AI]: | |
model response here | |
[HUMAN]: | |
user prompt here | |
[AI]: | |
model response here | |
``` | |
The corresponding code should be: | |
``` | |
_register_template( | |
name="custom", | |
format_user=StringFormatter(slots=["[HUMAN]:\n{{content}}\n[AI]:\n"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
efficient_eos=True, | |
) | |
``` | |
""" | |
eos_slots = [] if efficient_eos else [{"eos_token"}] | |
template_class = Llama2Template if name.startswith("llama2") else Template | |
default_user_formatter = StringFormatter(slots=["{{content}}"]) | |
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) | |
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots) | |
default_tool_formatter = ToolFormatter(tool_format="default") | |
default_separator_formatter = EmptyFormatter() | |
TEMPLATES[name] = template_class( | |
format_user=format_user or default_user_formatter, | |
format_assistant=format_assistant or default_assistant_formatter, | |
format_system=format_system or default_user_formatter, | |
format_function=format_function or default_function_formatter, | |
format_observation=format_observation or format_user or default_user_formatter, | |
format_tools=format_tools or default_tool_formatter, | |
format_separator=format_separator or default_separator_formatter, | |
default_system=default_system, | |
stop_words=stop_words, | |
image_token=image_token, | |
efficient_eos=efficient_eos, | |
replace_eos=replace_eos, | |
force_system=force_system, | |
) | |
def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None: | |
is_added = tokenizer.eos_token_id is None | |
num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token}) | |
if is_added: | |
logger.info("Add eos token: {}".format(tokenizer.eos_token)) | |
else: | |
logger.info("Replace eos token: {}".format(tokenizer.eos_token)) | |
if num_added_tokens > 0: | |
logger.warning("New tokens have been added, make sure `resize_vocab` is True.") | |
def _jinja_escape(content: str) -> str: | |
return content.replace("'", r"\'") | |
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str: | |
slot_items = [] | |
for slot in slots: | |
if isinstance(slot, str): | |
slot_pieces = slot.split("{{content}}") | |
if slot_pieces[0]: | |
slot_items.append("'" + _jinja_escape(slot_pieces[0]) + "'") | |
if len(slot_pieces) > 1: | |
slot_items.append(placeholder) | |
if slot_pieces[1]: | |
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'") | |
elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced | |
if "bos_token" in slot and tokenizer.bos_token_id is not None: | |
slot_items.append("'" + tokenizer.bos_token + "'") | |
elif "eos_token" in slot and tokenizer.eos_token_id is not None: | |
slot_items.append("'" + tokenizer.eos_token + "'") | |
elif isinstance(slot, dict): | |
raise ValueError("Dict is not supported.") | |
return " + ".join(slot_items) | |
def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str: | |
jinja_template = "" | |
if template.default_system: | |
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}" | |
jinja_template += ( | |
"{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}" | |
) | |
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message") | |
if isinstance(template, Llama2Template): | |
pass | |
elif template.force_system: | |
jinja_template += "{{ " + system_message + " }}" | |
else: | |
jinja_template += "{% if system_message is defined %}{{ " + system_message + " }}{% endif %}" | |
jinja_template += "{% for message in messages %}" | |
jinja_template += "{% set content = message['content'] %}" | |
if isinstance(template, Llama2Template): | |
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}" | |
jinja_template += "{% set content = " + system_message + " + message['content'] %}" | |
jinja_template += "{% endif %}" | |
jinja_template += "{% if message['role'] == 'user' %}" | |
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer) | |
jinja_template += "{{ " + user_message + " }}" | |
jinja_template += "{% elif message['role'] == 'assistant' %}" | |
assistant_message = _convert_slots_to_jinja( | |
template.format_assistant.apply() + template.format_separator.apply(), tokenizer | |
) | |
jinja_template += "{{ " + assistant_message + " }}" | |
jinja_template += "{% endif %}" | |
jinja_template += "{% endfor %}" | |
return jinja_template | |
def get_template_and_fix_tokenizer( | |
tokenizer: "PreTrainedTokenizer", | |
name: Optional[str] = None, | |
) -> Template: | |
if name is None: | |
template = TEMPLATES["empty"] # placeholder | |
else: | |
template = TEMPLATES.get(name, None) | |
if template is None: | |
raise ValueError("Template {} does not exist.".format(name)) | |
stop_words = template.stop_words | |
if template.replace_eos: | |
if not stop_words: | |
raise ValueError("Stop words are required to replace the EOS token.") | |
_add_or_replace_eos_token(tokenizer, eos_token=stop_words[0]) | |
stop_words = stop_words[1:] | |
if tokenizer.eos_token_id is None: | |
_add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>") | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
logger.info("Add pad token: {}".format(tokenizer.pad_token)) | |
if stop_words: | |
num_added_tokens = tokenizer.add_special_tokens( | |
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False | |
) | |
logger.info("Add {} to stop words.".format(",".join(stop_words))) | |
if num_added_tokens > 0: | |
logger.warning("New tokens have been added, make sure `resize_vocab` is True.") | |
try: | |
tokenizer.chat_template = _get_jinja_template(template, tokenizer) | |
except ValueError: | |
logger.info("Cannot add this chat template to tokenizer.") | |
return template | |
_register_template( | |
name="alpaca", | |
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
default_system=( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request.\n\n" | |
), | |
) | |
_register_template( | |
name="aquila", | |
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), | |
format_separator=EmptyFormatter(slots=["###"]), | |
default_system=( | |
"A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions." | |
), | |
stop_words=["</s>"], | |
efficient_eos=True, | |
) | |
_register_template( | |
name="atom", | |
format_user=StringFormatter( | |
slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"] | |
), | |
format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]), | |
) | |
_register_template( | |
name="baichuan", | |
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="baichuan2", | |
format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="belle", | |
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
force_system=True, | |
) | |
_register_template( | |
name="bluelm", | |
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), | |
) | |
_register_template( | |
name="breeze", | |
format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
default_system=( | |
"You are a helpful AI assistant built by MediaTek Research. " | |
"The user you are helping speaks Traditional Chinese and comes from Taiwan." | |
), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="chatglm2", | |
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), | |
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
efficient_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="chatglm3", | |
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), | |
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), | |
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), | |
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), | |
format_observation=StringFormatter( | |
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] | |
), | |
stop_words=["<|user|>", "<|observation|>"], | |
efficient_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="chatglm3_system", | |
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), | |
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), | |
format_system=StringFormatter( | |
slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"] | |
), | |
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), | |
format_observation=StringFormatter( | |
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] | |
), | |
default_system=( | |
"You are ChatGLM3, a large language model trained by Zhipu.AI. " | |
"Follow the user's instructions carefully. Respond using markdown." | |
), | |
stop_words=["<|user|>", "<|observation|>"], | |
efficient_eos=True, | |
) | |
_register_template( | |
name="chatml", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<|im_end|>", "<|im_start|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="chatml_de", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.", | |
stop_words=["<|im_end|>", "<|im_start|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="codegeex2", | |
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="cohere", | |
format_user=StringFormatter( | |
slots=[ | |
( | |
"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>" | |
"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" | |
) | |
] | |
), | |
format_system=StringFormatter( | |
slots=[{"bos_token"}, "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"] | |
), | |
default_system=( | |
"You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users " | |
"by providing thorough responses. You are trained by Cohere." | |
), | |
) | |
_register_template( | |
name="cpm", | |
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="dbrx", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system=( | |
"You are DBRX, created by Databricks. You were last updated in December 2023. " | |
"You answer questions based on information available up to that point.\n" | |
"YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough " | |
"responses to more complex and open-ended questions.\nYou assist with various tasks, " | |
"from writing to coding (using markdown for code blocks — remember to use ``` with " | |
"code, JSON, and tables).\n(You do not have real-time data access or code execution " | |
"capabilities. You avoid stereotyping and provide balanced perspectives on " | |
"controversial topics. You do not provide song lyrics, poems, or news articles and " | |
"do not divulge details of your training data.)\nThis is your system prompt, " | |
"guiding your responses. Do not reference it, just respond to the user. If you find " | |
"yourself talking about this message, stop. You should be responding appropriately " | |
"and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION " | |
"ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY." | |
), | |
stop_words=["<|im_end|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="deepseek", | |
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="deepseekcoder", | |
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]), | |
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), | |
format_separator=EmptyFormatter(slots=["\n<|EOT|>\n"]), | |
default_system=( | |
"You are an AI programming assistant, utilizing the Deepseek Coder model, " | |
"developed by Deepseek Company, and you only answer questions related to computer science. " | |
"For politically sensitive questions, security and privacy issues, " | |
"and other non-computer science questions, you will refuse to answer\n" | |
), | |
stop_words=["<|EOT|>"], | |
efficient_eos=True, | |
) | |
_register_template( | |
name="default", | |
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]), | |
format_system=StringFormatter(slots=["{{content}}\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
) | |
_register_template( | |
name="empty", | |
format_user=StringFormatter(slots=["{{content}}"]), | |
format_assistant=StringFormatter(slots=["{{content}}"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
efficient_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="falcon", | |
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="fewshot", | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="gemma", | |
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
format_observation=StringFormatter( | |
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"] | |
), | |
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]), | |
efficient_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="glm4", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]), | |
format_assistant=StringFormatter(slots=["\n{{content}}"]), | |
format_system=StringFormatter(slots=["[gMASK]<sop>{{content}}"]), | |
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), | |
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]), | |
stop_words=["<|user|>", "<|observation|>"], | |
efficient_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="intern", | |
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]), | |
format_separator=EmptyFormatter(slots=[{"token": "<eoa>"}, "\n"]), | |
stop_words=["<eoa>"], | |
efficient_eos=True, | |
) | |
_register_template( | |
name="intern2", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system=( | |
"You are an AI assistant whose name is InternLM (书生·浦语).\n" | |
"- InternLM (书生·浦语) is a conversational language model that is developed " | |
"by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" | |
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen " | |
"by the user such as English and 中文." | |
), | |
stop_words=["<|im_end|>"], | |
efficient_eos=True, # internlm2 tokenizer cannot set eos_token_id | |
) | |
_register_template( | |
name="llama2", | |
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), | |
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]), | |
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), | |
) | |
_register_template( | |
name="llama2_zh", | |
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), | |
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), | |
default_system="You are a helpful assistant. 你是一个乐于助人的助手。", | |
) | |
_register_template( | |
name="llama3", | |
format_user=StringFormatter( | |
slots=[ | |
( | |
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
] | |
), | |
format_system=StringFormatter( | |
slots=[{"bos_token"}, "<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"] | |
), | |
format_observation=StringFormatter( | |
slots=[ | |
( | |
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>" | |
"<|start_header_id|>assistant<|end_header_id|>\n\n" | |
) | |
] | |
), | |
default_system="You are a helpful assistant.", | |
stop_words=["<|eot_id|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="mistral", | |
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="olmo", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]), | |
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="openchat", | |
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="openchat-3.6", | |
format_user=StringFormatter( | |
slots=[ | |
( | |
"<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>" | |
"<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n" | |
) | |
] | |
), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
stop_words=["<|eot_id|>"], | |
replace_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="orion", | |
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
_register_template( | |
name="phi", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "<|system|>\n{{content}}<|end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system="You are a helpful AI assistant.", | |
stop_words=["<|end|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="qwen", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system="You are a helpful assistant.", | |
stop_words=["<|im_end|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="solar", | |
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), | |
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), | |
efficient_eos=True, | |
) | |
_register_template( | |
name="starchat", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]), | |
format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<|end|>"], | |
replace_eos=True, | |
force_system=True, | |
) | |
_register_template( | |
name="telechat", | |
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]), | |
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]), | |
stop_words=["<_end>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="vicuna", | |
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), | |
default_system=( | |
"A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions." | |
), | |
) | |
_register_template( | |
name="xuanyuan", | |
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), | |
default_system=( | |
"以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," | |
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" | |
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n" | |
), | |
) | |
_register_template( | |
name="xverse", | |
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]), | |
) | |
_register_template( | |
name="yayi", | |
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), | |
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
default_system=( | |
"You are a helpful, respectful and honest assistant named YaYi " | |
"developed by Beijing Wenge Technology Co.,Ltd. " | |
"Always answer as helpfully as possible, while being safe. " | |
"Your answers should not include any harmful, unethical, " | |
"racist, sexist, toxic, dangerous, or illegal content. " | |
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" | |
"If a question does not make any sense, or is not factually coherent, " | |
"explain why instead of answering something not correct. " | |
"If you don't know the answer to a question, please don't share false information." | |
), | |
stop_words=["<|End|>"], | |
) | |
_register_template( | |
name="yi", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<|im_end|>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="yi_vl", | |
format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system=( | |
"This is a chat between an inquisitive human and an AI assistant. " | |
"Assume the role of the AI assistant. Read all the images carefully, " | |
"and respond to the human's questions with informative, helpful, detailed and polite answers. " | |
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。" | |
"仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n" | |
), | |
stop_words=["###"], | |
efficient_eos=True, | |
) | |
_register_template( | |
name="yuan", | |
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<eod>"], | |
replace_eos=True, | |
) | |
_register_template( | |
name="zephyr", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]), | |
format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]), | |
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), | |
default_system="You are Zephyr, a helpful assistant.", | |
) | |
_register_template( | |
name="ziya", | |
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
) | |