Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import torch | |
from llamafactory.hparams import get_infer_args, get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "freeze", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"overwrite_cache": True, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
INFER_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"finetuning_type": "freeze", | |
"template": "llama3", | |
"infer_dtype": "float16", | |
} | |
def test_freeze_train_all_modules(): | |
model_args, _, _, finetuning_args, _ = get_train_args({"freeze_trainable_layers": 1, **TRAIN_ARGS}) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
for name, param in model.named_parameters(): | |
if name.startswith("model.layers.1."): | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
else: | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |
def test_freeze_train_extra_modules(): | |
model_args, _, _, finetuning_args, _ = get_train_args( | |
{"freeze_trainable_layers": 1, "freeze_extra_modules": "embed_tokens,lm_head", **TRAIN_ARGS} | |
) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
for name, param in model.named_parameters(): | |
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]): | |
assert param.requires_grad is True | |
assert param.dtype == torch.float32 | |
else: | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |
def test_freeze_inference(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) | |
for param in model.parameters(): | |
assert param.requires_grad is False | |
assert param.dtype == torch.float16 | |