Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import base64 | |
import io | |
import json | |
import os | |
import uuid | |
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple | |
from ..data import Role as DataRole | |
from ..extras.logging import get_logger | |
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available | |
from .common import dictify, jsonify | |
from .protocol import ( | |
ChatCompletionMessage, | |
ChatCompletionResponse, | |
ChatCompletionResponseChoice, | |
ChatCompletionResponseUsage, | |
ChatCompletionStreamResponse, | |
ChatCompletionStreamResponseChoice, | |
Finish, | |
Function, | |
FunctionCall, | |
Role, | |
ScoreEvaluationResponse, | |
) | |
if is_fastapi_available(): | |
from fastapi import HTTPException, status | |
if is_pillow_available(): | |
from PIL import Image | |
if is_requests_available(): | |
import requests | |
if TYPE_CHECKING: | |
from numpy.typing import NDArray | |
from ..chat import ChatModel | |
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest | |
logger = get_logger(__name__) | |
ROLE_MAPPING = { | |
Role.USER: DataRole.USER.value, | |
Role.ASSISTANT: DataRole.ASSISTANT.value, | |
Role.SYSTEM: DataRole.SYSTEM.value, | |
Role.FUNCTION: DataRole.FUNCTION.value, | |
Role.TOOL: DataRole.OBSERVATION.value, | |
} | |
def _process_request( | |
request: "ChatCompletionRequest", | |
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]: | |
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False))) | |
if len(request.messages) == 0: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length") | |
if request.messages[0].role == Role.SYSTEM: | |
system = request.messages.pop(0).content | |
else: | |
system = None | |
if len(request.messages) % 2 == 0: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") | |
input_messages = [] | |
image = None | |
for i, message in enumerate(request.messages): | |
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls): | |
name = message.tool_calls[0].function.name | |
arguments = message.tool_calls[0].function.arguments | |
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False) | |
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content}) | |
elif isinstance(message.content, list): | |
for input_item in message.content: | |
if input_item.type == "text": | |
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text}) | |
else: | |
image_url = input_item.image_url.url | |
if image_url.startswith("data:image"): # base64 image | |
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1]) | |
image_path = io.BytesIO(image_data) | |
elif os.path.isfile(image_url): # local file | |
image_path = open(image_url, "rb") | |
else: # web uri | |
image_path = requests.get(image_url, stream=True).raw | |
image = Image.open(image_path).convert("RGB") | |
else: | |
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content}) | |
tool_list = request.tools | |
if isinstance(tool_list, list) and len(tool_list): | |
try: | |
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False) | |
except Exception: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools") | |
else: | |
tools = None | |
return input_messages, system, tools, image | |
def _create_stream_chat_completion_chunk( | |
completion_id: str, | |
model: str, | |
delta: "ChatCompletionMessage", | |
index: Optional[int] = 0, | |
finish_reason: Optional["Finish"] = None, | |
) -> str: | |
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason) | |
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data]) | |
return jsonify(chunk) | |
async def create_chat_completion_response( | |
request: "ChatCompletionRequest", chat_model: "ChatModel" | |
) -> "ChatCompletionResponse": | |
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) | |
input_messages, system, tools, image = _process_request(request) | |
responses = await chat_model.achat( | |
input_messages, | |
system, | |
tools, | |
image, | |
do_sample=request.do_sample, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
max_new_tokens=request.max_tokens, | |
num_return_sequences=request.n, | |
stop=request.stop, | |
) | |
prompt_length, response_length = 0, 0 | |
choices = [] | |
for i, response in enumerate(responses): | |
if tools: | |
result = chat_model.engine.template.format_tools.extract(response.response_text) | |
else: | |
result = response.response_text | |
if isinstance(result, tuple): | |
name, arguments = result | |
function = Function(name=name, arguments=arguments) | |
tool_call = FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function) | |
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=[tool_call]) | |
finish_reason = Finish.TOOL | |
else: | |
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result) | |
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH | |
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)) | |
prompt_length = response.prompt_length | |
response_length += response.response_length | |
usage = ChatCompletionResponseUsage( | |
prompt_tokens=prompt_length, | |
completion_tokens=response_length, | |
total_tokens=prompt_length + response_length, | |
) | |
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage) | |
async def create_stream_chat_completion_response( | |
request: "ChatCompletionRequest", chat_model: "ChatModel" | |
) -> AsyncGenerator[str, None]: | |
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex) | |
input_messages, system, tools, image = _process_request(request) | |
if tools: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.") | |
if request.n > 1: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.") | |
yield _create_stream_chat_completion_chunk( | |
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="") | |
) | |
async for new_token in chat_model.astream_chat( | |
input_messages, | |
system, | |
tools, | |
image, | |
do_sample=request.do_sample, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
max_new_tokens=request.max_tokens, | |
stop=request.stop, | |
): | |
if len(new_token) != 0: | |
yield _create_stream_chat_completion_chunk( | |
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token) | |
) | |
yield _create_stream_chat_completion_chunk( | |
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP | |
) | |
yield "[DONE]" | |
async def create_score_evaluation_response( | |
request: "ScoreEvaluationRequest", chat_model: "ChatModel" | |
) -> "ScoreEvaluationResponse": | |
if len(request.messages) == 0: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") | |
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length) | |
return ScoreEvaluationResponse(model=request.model, scores=scores) | |