Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union | |
if TYPE_CHECKING: | |
from numpy.typing import NDArray | |
from transformers import PreTrainedModel, PreTrainedTokenizer | |
from vllm import AsyncLLMEngine | |
from ..data import Template | |
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
class Response: | |
response_text: str | |
response_length: int | |
prompt_length: int | |
finish_reason: Literal["stop", "length"] | |
class BaseEngine(ABC): | |
model: Union["PreTrainedModel", "AsyncLLMEngine"] | |
tokenizer: "PreTrainedTokenizer" | |
can_generate: bool | |
template: "Template" | |
generating_args: Dict[str, Any] | |
def __init__( | |
self, | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
) -> None: ... | |
async def start( | |
self, | |
) -> None: ... | |
async def chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> List["Response"]: ... | |
async def stream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> AsyncGenerator[str, None]: ... | |
async def get_scores( | |
self, | |
batch_input: List[str], | |
**input_kwargs, | |
) -> List[float]: ... | |