Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Literal, Optional | |
class DataArguments: | |
r""" | |
Arguments pertaining to what data we are going to input our model for training and evaluation. | |
""" | |
template: Optional[str] = field( | |
default=None, | |
metadata={"help": "Which template to use for constructing prompts in training and inference."}, | |
) | |
dataset: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}, | |
) | |
dataset_dir: str = field( | |
default="data", | |
metadata={"help": "Path to the folder containing the datasets."}, | |
) | |
split: str = field( | |
default="train", | |
metadata={"help": "Which dataset split to use for training and evaluation."}, | |
) | |
cutoff_len: int = field( | |
default=1024, | |
metadata={"help": "The cutoff length of the tokenized inputs in the dataset."}, | |
) | |
reserved_label_len: int = field( | |
default=1, | |
metadata={"help": "The minimum cutoff length reserved for the tokenized labels in the dataset."}, | |
) | |
train_on_prompt: bool = field( | |
default=False, | |
metadata={"help": "Whether to disable the mask on the prompt or not."}, | |
) | |
streaming: bool = field( | |
default=False, | |
metadata={"help": "Enable dataset streaming."}, | |
) | |
buffer_size: int = field( | |
default=16384, | |
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}, | |
) | |
mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field( | |
default="concat", | |
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, | |
) | |
interleave_probs: Optional[str] = field( | |
default=None, | |
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, | |
) | |
overwrite_cache: bool = field( | |
default=False, | |
metadata={"help": "Overwrite the cached training and evaluation sets."}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the pre-processing."}, | |
) | |
max_samples: Optional[int] = field( | |
default=None, | |
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}, | |
) | |
eval_num_beams: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, | |
) | |
ignore_pad_token_for_loss: bool = field( | |
default=True, | |
metadata={ | |
"help": "Whether or not to ignore the tokens corresponding to padded labels in the loss computation." | |
}, | |
) | |
val_size: float = field( | |
default=0.0, | |
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}, | |
) | |
packing: Optional[bool] = field( | |
default=None, | |
metadata={ | |
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training." | |
}, | |
) | |
tokenized_path: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to save or load the tokenized datasets."}, | |
) | |
def __post_init__(self): | |
if self.reserved_label_len >= self.cutoff_len: | |
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.") | |
if self.streaming and self.val_size > 1e-6 and self.val_size < 1: | |
raise ValueError("Streaming mode should have an integer val size.") | |
if self.streaming and self.max_samples is not None: | |
raise ValueError("`max_samples` is incompatible with `streaming`.") | |