Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
14.6 kB
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import List, Literal, Optional
@dataclass
class FreezeArguments:
r"""
Arguments pertaining to the freeze (partial-parameter) training.
"""
freeze_trainable_layers: int = field(
default=2,
metadata={
"help": (
"The number of trainable layers for freeze (partial-parameter) fine-tuning. "
"Positive numbers mean the last n layers are set as trainable, "
"negative numbers mean the first n layers are set as trainable."
)
},
)
freeze_trainable_modules: str = field(
default="all",
metadata={
"help": (
"Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
"Use commas to separate multiple modules. "
"Use `all` to specify all the available modules."
)
},
)
freeze_extra_modules: Optional[str] = field(
default=None,
metadata={
"help": (
"Name(s) of modules apart from hidden layers to be set as trainable "
"for freeze (partial-parameter) fine-tuning. "
"Use commas to separate multiple modules."
)
},
)
@dataclass
class LoraArguments:
r"""
Arguments pertaining to the LoRA training.
"""
additional_target: Optional[str] = field(
default=None,
metadata={
"help": (
"Name(s) of modules apart from LoRA layers to be set as trainable "
"and saved in the final checkpoint. "
"Use commas to separate multiple modules."
)
},
)
lora_alpha: Optional[int] = field(
default=None,
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
)
lora_dropout: float = field(
default=0.0,
metadata={"help": "Dropout rate for the LoRA fine-tuning."},
)
lora_rank: int = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
)
lora_target: str = field(
default="all",
metadata={
"help": (
"Name(s) of target modules to apply LoRA. "
"Use commas to separate multiple modules. "
"Use `all` to specify all the linear modules."
)
},
)
loraplus_lr_ratio: Optional[float] = field(
default=None,
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
)
loraplus_lr_embedding: float = field(
default=1e-6,
metadata={"help": "LoRA plus learning rate for lora embedding layers."},
)
use_rslora: bool = field(
default=False,
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
)
use_dora: bool = field(
default=False,
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
)
pissa_init: bool = field(
default=False,
metadata={"help": "Whether or not to initialize a PiSSA adapter."},
)
pissa_iter: int = field(
default=4,
metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
)
pissa_convert: bool = field(
default=False,
metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
)
create_new_adapter: bool = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
)
@dataclass
class RLHFArguments:
r"""
Arguments pertaining to the PPO, DPO and KTO training.
"""
pref_beta: float = field(
default=0.1,
metadata={"help": "The beta parameter in the preference loss."},
)
pref_ftx: float = field(
default=0.0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
)
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
default="sigmoid",
metadata={"help": "The type of DPO loss to use."},
)
dpo_label_smoothing: float = field(
default=0.0,
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
)
kto_chosen_weight: float = field(
default=1.0,
metadata={"help": "The weight factor of the desirable losses in KTO training."},
)
kto_rejected_weight: float = field(
default=1.0,
metadata={"help": "The weight factor of the undesirable losses in KTO training."},
)
simpo_gamma: float = field(
default=0.5,
metadata={"help": "The target reward margin term in SimPO loss."},
)
ppo_buffer_size: int = field(
default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
)
ppo_epochs: int = field(
default=4,
metadata={"help": "The number of epochs to perform in a PPO optimization step."},
)
ppo_score_norm: bool = field(
default=False,
metadata={"help": "Use score normalization in PPO training."},
)
ppo_target: float = field(
default=6.0,
metadata={"help": "Target KL value for adaptive KL control in PPO training."},
)
ppo_whiten_rewards: bool = field(
default=False,
metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
)
ref_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reference model used for the PPO or DPO training."},
)
ref_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reference model."},
)
ref_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reference model."},
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reward model used for the PPO training."},
)
reward_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reward model."},
)
reward_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reward model."},
)
reward_model_type: Literal["lora", "full", "api"] = field(
default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
)
@dataclass
class GaloreArguments:
r"""
Arguments pertaining to the GaLore algorithm.
"""
use_galore: bool = field(
default=False,
metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
)
galore_target: str = field(
default="all",
metadata={
"help": (
"Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
"Use `all` to specify all the linear modules."
)
},
)
galore_rank: int = field(
default=16,
metadata={"help": "The rank of GaLore gradients."},
)
galore_update_interval: int = field(
default=200,
metadata={"help": "Number of steps to update the GaLore projection."},
)
galore_scale: float = field(
default=0.25,
metadata={"help": "GaLore scaling coefficient."},
)
galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
default="std",
metadata={"help": "Type of GaLore projection."},
)
galore_layerwise: bool = field(
default=False,
metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
)
@dataclass
class BAdamArgument:
r"""
Arguments pertaining to the BAdam optimizer.
"""
use_badam: bool = field(
default=False,
metadata={"help": "Whether or not to use the BAdam optimizer."},
)
badam_mode: Literal["layer", "ratio"] = field(
default="layer",
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
)
badam_start_block: Optional[int] = field(
default=None,
metadata={"help": "The starting block index for layer-wise BAdam."},
)
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
default="ascending",
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
)
badam_switch_interval: Optional[int] = field(
default=50,
metadata={
"help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
},
)
badam_update_ratio: float = field(
default=0.05,
metadata={"help": "The ratio of the update for ratio-wise BAdam."},
)
badam_mask_mode: Literal["adjacent", "scatter"] = field(
default="adjacent",
metadata={
"help": (
"The mode of the mask for BAdam optimizer. "
"`adjacent` means that the trainable parameters are adjacent to each other, "
"`scatter` means that trainable parameters are randomly choosed from the weight."
)
},
)
badam_verbose: int = field(
default=0,
metadata={
"help": (
"The verbosity level of BAdam optimizer. "
"0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
)
},
)
@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument):
r"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
pure_bf16: bool = field(
default=False,
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
)
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."},
)
finetuning_type: Literal["lora", "freeze", "full"] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."},
)
use_llama_pro: bool = field(
default=False,
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
)
freeze_vision_tower: bool = field(
default=True,
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
)
train_mm_proj_only: bool = field(
default=False,
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
)
plot_loss: bool = field(
default=False,
metadata={"help": "Whether or not to save the training loss curves."},
)
def __post_init__(self):
def split_arg(arg):
if isinstance(arg, str):
return [item.strip() for item in arg.split(",")]
return arg
self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules)
self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules)
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
self.lora_target: List[str] = split_arg(self.lora_target)
self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
self.galore_target: List[str] = split_arg(self.galore_target)
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
if self.stage == "ppo" and self.reward_model is None:
raise ValueError("`reward_model` is necessary for PPO training.")
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")
if self.use_llama_pro and self.finetuning_type == "full":
raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.")
if self.finetuning_type == "lora" and (self.use_galore or self.use_badam):
raise ValueError("Cannot use LoRA with GaLore or BAdam together.")
if self.use_galore and self.use_badam:
raise ValueError("Cannot use GaLore with BAdam together.")
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
if self.pissa_convert and self.finetuning_type != "lora":
raise ValueError("`pissa_convert` is only valid for LoRA training.")
if self.pissa_convert and (self.stage in ["rm", "ppo", "kto"] or self.use_ref_model):
raise ValueError("Cannot use PiSSA for current training stage.")
if self.train_mm_proj_only and self.finetuning_type != "full":
raise ValueError("`train_mm_proj_only` is only valid for full training.")