Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's TRL library. | |
# https://github.com/huggingface/trl/blob/v0.8.0/examples/scripts/ppo.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, List, Optional | |
from transformers import DataCollatorWithPadding | |
from ...data import get_dataset | |
from ...extras.callbacks import FixValueHeadModelCallback | |
from ...extras.misc import fix_valuehead_checkpoint | |
from ...extras.ploting import plot_loss | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_ref_model, create_reward_model | |
from .trainer import CustomPPOTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
def run_ppo( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
dataset = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True) | |
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
# Create reference model and reward model | |
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True) | |
reward_model = create_reward_model(model, model_args, finetuning_args) | |
# Initialize our Trainer | |
ppo_trainer = CustomPPOTrainer( | |
model_args=model_args, | |
training_args=training_args, | |
finetuning_args=finetuning_args, | |
generating_args=generating_args, | |
callbacks=callbacks + [FixValueHeadModelCallback()], | |
model=model, | |
reward_model=reward_model, | |
ref_model=ref_model, | |
dataset=dataset, | |
data_collator=data_collator, | |
**tokenizer_module, | |
) | |
# Training | |
if training_args.do_train: | |
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
ppo_trainer.save_model() | |
if training_args.should_save: | |
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) | |
ppo_trainer.save_state() # must be called after save_model to have a folder | |
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "reward"]) | |