Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
from types import MethodType | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from transformers import Seq2SeqTrainer | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.logging import get_logger | |
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler | |
if TYPE_CHECKING: | |
from torch.utils.data import Dataset | |
from transformers import ProcessorMixin | |
from transformers.trainer import PredictionOutput | |
from ...hparams import FinetuningArguments | |
logger = get_logger(__name__) | |
class CustomSeq2SeqTrainer(Seq2SeqTrainer): | |
r""" | |
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. | |
""" | |
def __init__( | |
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs | |
) -> None: | |
super().__init__(**kwargs) | |
self.finetuning_args = finetuning_args | |
self.processor = processor | |
if finetuning_args.pissa_convert: | |
self.save_model(os.path.join(self.args.output_dir, "pissa_init")) | |
if finetuning_args.use_badam: | |
from badam import clip_grad_norm_for_sparse_tensor | |
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator) | |
def create_optimizer(self) -> "torch.optim.Optimizer": | |
if self.optimizer is None: | |
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) | |
return super().create_optimizer() | |
def create_scheduler( | |
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None | |
) -> "torch.optim.lr_scheduler.LRScheduler": | |
create_custom_scheduler(self.args, num_training_steps, optimizer) | |
return super().create_scheduler(num_training_steps, optimizer) | |
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None: | |
super()._save(output_dir, state_dict) | |
output_dir = output_dir if output_dir is not None else self.args.output_dir | |
if self.finetuning_args.pissa_convert: | |
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args) | |
if self.processor is not None: | |
getattr(self.processor, "image_processor").save_pretrained(output_dir) | |
def prediction_step( | |
self, | |
model: "torch.nn.Module", | |
inputs: Dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[List[str]] = None, | |
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: | |
r""" | |
Removes the prompt part in the generated tokens. | |
Subclass and override to inject custom behavior. | |
""" | |
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels | |
if self.args.predict_with_generate: | |
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor." | |
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1) | |
if prompt_len > label_len: | |
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"]) | |
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility) | |
inputs["labels"] = inputs["labels"][:, :prompt_len] | |
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated) | |
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys | |
) | |
if generated_tokens is not None and self.args.predict_with_generate: | |
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id | |
generated_tokens = generated_tokens.contiguous() | |
return loss, generated_tokens, labels | |
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor: | |
r""" | |
Pads the tensor to the same length as the target tensor. | |
""" | |
assert self.tokenizer.pad_token_id is not None, "Pad token is required." | |
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor) | |
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding | |
return padded_tensor.contiguous() # in contiguous memory | |
def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None: | |
r""" | |
Saves model predictions to `output_dir`. | |
A custom behavior that not contained in Seq2SeqTrainer. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") | |
logger.info(f"Saving prediction results to {output_prediction_file}") | |
labels = np.where( | |
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id | |
) | |
preds = np.where( | |
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id | |
) | |
for i in range(len(preds)): | |
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0] | |
if len(pad_len): | |
preds[i] = np.concatenate( | |
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1 | |
) # move pad token to last | |
decoded_inputs = self.tokenizer.batch_decode( | |
dataset["input_ids"], skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
decoded_labels = self.tokenizer.batch_decode( | |
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
with open(output_prediction_file, "w", encoding="utf-8") as writer: | |
res: List[str] = [] | |
for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds): | |
res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False)) | |
writer.write("\n".join(res)) | |