Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
raw
history blame
7.15 kB
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
from torch.utils.data import Dataset
from transformers import ProcessorMixin
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def prediction_step(
self,
model: "torch.nn.Module",
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
r"""
Removes the prompt part in the generated tokens.
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len):
preds[i] = np.concatenate(
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_inputs = self.tokenizer.batch_decode(
dataset["input_ids"], skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds):
res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))