Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import Dict | |
import pytest | |
import torch | |
from transformers import AutoModelForCausalLM | |
from trl import AutoModelForCausalLMWithValueHead | |
from llamafactory.extras.misc import get_current_device | |
from llamafactory.hparams import get_infer_args | |
from llamafactory.model import load_model, load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") | |
INFER_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"template": "llama3", | |
"infer_dtype": "float16", | |
} | |
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): | |
state_dict_a = model_a.state_dict() | |
state_dict_b = model_b.state_dict() | |
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) | |
for name in state_dict_a.keys(): | |
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) | |
def fix_valuehead_cpu_loading(): | |
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]): | |
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} | |
self.v_head.load_state_dict(state_dict, strict=False) | |
del state_dict | |
AutoModelForCausalLMWithValueHead.post_init = post_init | |
def test_base(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) | |
ref_model = AutoModelForCausalLM.from_pretrained( | |
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
compare_model(model, ref_model) | |
def test_valuehead(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model( | |
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False, add_valuehead=True | |
) | |
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained( | |
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
compare_model(model, ref_model) | |