Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import torch | |
from peft import LoraModel, PeftModel | |
from transformers import AutoModelForCausalLM | |
from llamafactory.extras.misc import get_current_device | |
from llamafactory.hparams import get_infer_args, get_train_args | |
from llamafactory.model import load_model, load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "lora", | |
"pissa_init": True, | |
"pissa_iter": -1, | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 1024, | |
"overwrite_cache": True, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
INFER_ARGS = { | |
"model_name_or_path": TINY_LLAMA_PISSA, | |
"adapter_name_or_path": TINY_LLAMA_PISSA, | |
"adapter_folder": "pissa_init", | |
"finetuning_type": "lora", | |
"template": "llama3", | |
"infer_dtype": "float16", | |
} | |
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): | |
state_dict_a = model_a.state_dict() | |
state_dict_b = model_b.state_dict() | |
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) | |
for name in state_dict_a.keys(): | |
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) | |
def test_pissa_init(): | |
model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init", is_trainable=True) | |
for param in filter(lambda p: p.requires_grad, ref_model.parameters()): | |
param.data = param.data.to(torch.float32) | |
compare_model(model, ref_model) | |
def test_pissa_inference(): | |
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device() | |
) | |
ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init") | |
ref_model = ref_model.merge_and_unload() | |
compare_model(model, ref_model) | |