# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import pytest from datasets import load_dataset from llamafactory.data import get_dataset from llamafactory.hparams import get_train_args from llamafactory.model import load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "full", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 8192, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } @pytest.mark.parametrize("num_samples", [16]) def test_supervised(num_samples: int): model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS) tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) original_data = load_dataset(TRAIN_ARGS["dataset"], split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: decoded_result = tokenizer.decode(tokenized_data["input_ids"][index]) prompt = original_data[index]["instruction"] if original_data[index]["input"]: prompt += "\n" + original_data[index]["input"] messages = [ {"role": "user", "content": prompt}, {"role": "assistant", "content": original_data[index]["output"]}, ] templated_result = tokenizer.apply_chat_template(messages, tokenize=False) assert decoded_result == templated_result