# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from peft import LoraModel, PeftModel from transformers import AutoModelForCausalLM from llamafactory.extras.misc import get_current_device from llamafactory.hparams import get_infer_args, get_train_args from llamafactory.model import load_model, load_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "pissa_init": True, "pissa_iter": -1, "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } INFER_ARGS = { "model_name_or_path": TINY_LLAMA_PISSA, "adapter_name_or_path": TINY_LLAMA_PISSA, "adapter_folder": "pissa_init", "finetuning_type": "lora", "template": "llama3", "infer_dtype": "float16", } def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): state_dict_a = model_a.state_dict() state_dict_b = model_b.state_dict() assert set(state_dict_a.keys()) == set(state_dict_b.keys()) for name in state_dict_a.keys(): assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) def test_pissa_init(): model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) base_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device() ) ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init", is_trainable=True) for param in filter(lambda p: p.requires_grad, ref_model.parameters()): param.data = param.data.to(torch.float32) compare_model(model, ref_model) def test_pissa_inference(): model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) tokenizer_module = load_tokenizer(model_args) model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) base_model = AutoModelForCausalLM.from_pretrained( TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device() ) ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init") ref_model = ref_model.merge_and_unload() compare_model(model, ref_model)