from dotenv import load_dotenv load_dotenv() # take environment variables from .env. import streamlit as st import os import pathlib import textwrap from PIL import Image import google.generativeai as genai os.getenv("GOOGLE_API_KEY") genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) ## Function to load OpenAI model and get respones def get_gemini_response(input,image,prompt): model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content([input,image[0],prompt]) return response.text def input_image_setup(uploaded_file): # Check if a file has been uploaded if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: #raise FileNotFoundError("No file uploaded") st.error('Please upload an image', icon="🚨") ##initialize our streamlit app st.set_page_config(page_title="Image Chat") st.header("Upload an Image and begin to chat") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) image="" if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) # input=st.text_input("Input Prompt: ",key="input") # if input is None: # st.error('Please add an input', icon="🚨") #submit=st.button("Run") input_prompt = """ Analyze the image and give user a very descriptive information on the details in the image """ ## If ask button is clicked if 'messages' not in st.session_state: st.session_state['messages'] = [] #[{"role": "assistant", "content": "How can I help you?"}] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(): # if not openai_api_key: # st.info("Please add your OpenAI API key to continue.") # st.stop() #client = OpenAI(api_key=openai_api_key) #client = OpenAI() image_data = input_image_setup(uploaded_file) st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) #response = client.chat.completions.create(model="google/gemma-2b-it", messages=st.session_state.messages) response=get_gemini_response(input_prompt,image_data,prompt) msg = response #response.choices[0].message.content st.session_state.messages.append({"role": "assistant", "content": msg}) st.chat_message("assistant").write(msg)