File size: 41,243 Bytes
26e26de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
"""Callbacks: utilities called at certain points during model training.

# Adapted from

 - https://github.com/keras-team/keras
 - https://github.com/bstriner/keras-tqdm/blob/master/keras_tqdm/tqdm_callback.py

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import csv
import six

import numpy as np
import time
import json
import warnings
from tqdm import tqdm

from collections import deque
from collections import OrderedDict
from collections import Iterable

try:
    import requests
except ImportError:
    requests = None


class CallbackList(object):
    """Container abstracting a list of callbacks.

    # Arguments
        callbacks: List of `Callback` instances.
        queue_length: Queue length for keeping
            running statistics over callback execution time.
    """

    def __init__(self, callbacks=None, queue_length=10):
        callbacks = callbacks or []
        self.callbacks = [c for c in callbacks]
        self.queue_length = queue_length

    def append(self, callback):
        self.callbacks.append(callback)

    def set_params(self, params):
        for callback in self.callbacks:
            callback.set_params(params)

    def set_model(self, model):
        for callback in self.callbacks:
            callback.set_model(model)

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the start of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_begin(epoch, logs)
        self._delta_t_batch = 0.
        self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
        self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_end(epoch, logs)

    def on_batch_begin(self, batch, logs=None):
        """Called right before processing a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_begin(batch, logs)
        self._delta_ts_batch_begin.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_begin)
        if (self._delta_t_batch > 0. and
           delta_t_median > 0.95 * self._delta_t_batch and
           delta_t_median > 0.1):
            warnings.warn('Method on_batch_begin() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)
        self._t_enter_batch = time.time()

    def on_batch_end(self, batch, logs=None):
        """Called at the end of a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        if not hasattr(self, '_t_enter_batch'):
            self._t_enter_batch = time.time()
        self._delta_t_batch = time.time() - self._t_enter_batch
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_end(batch, logs)
        self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_end)
        if (self._delta_t_batch > 0. and
           (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
            warnings.warn('Method on_batch_end() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)

    def on_train_begin(self, logs=None):
        """Called at the beginning of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_begin(logs)

    def on_train_end(self, logs=None):
        """Called at the end of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_end(logs)

    def __iter__(self):
        return iter(self.callbacks)


class Callback(object):
    """Abstract base class used to build new callbacks.

    # Properties
        params: dict. Training parameters
            (eg. verbosity, batch size, number of epochs...).
        model: instance of `keras.models.Model`.
            Reference of the model being trained.

    The `logs` dictionary that callback methods
    take as argument will contain keys for quantities relevant to
    the current batch or epoch.

    Currently, the `.fit()` method of the `Sequential` model class
    will include the following quantities in the `logs` that
    it passes to its callbacks:

        on_epoch_end: logs include `acc` and `loss`, and
            optionally include `val_loss`
            (if validation is enabled in `fit`), and `val_acc`
            (if validation and accuracy monitoring are enabled).
        on_batch_begin: logs include `size`,
            the number of samples in the current batch.
        on_batch_end: logs include `loss`, and optionally `acc`
            (if accuracy monitoring is enabled).
    """

    def __init__(self):
        self.validation_data = None
        self.model = None

    def set_params(self, params):
        self.params = params

    def set_model(self, model):
        self.model = model

    def on_epoch_begin(self, epoch, logs=None):
        pass

    def on_epoch_end(self, epoch, logs=None):
        pass

    def on_batch_begin(self, batch, logs=None):
        pass

    def on_batch_end(self, batch, logs=None):
        pass

    def on_train_begin(self, logs=None):
        pass

    def on_train_end(self, logs=None):
        pass


class BaseLogger(Callback):
    """Callback that accumulates epoch averages of metrics.

    This callback is automatically applied to every Keras model.
    """

    def on_epoch_begin(self, epoch, logs=None):
        self.seen = 0
        self.totals = {}

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        self.seen += batch_size

        for k, v in logs.items():
            if k in self.totals:
                self.totals[k] += v * batch_size
            else:
                self.totals[k] = v * batch_size

    def on_epoch_end(self, epoch, logs=None):
        if logs is not None:
            for k in self.params['metrics']:
                if k in self.totals:
                    # Make value available to next callbacks.
                    logs[k] = self.totals[k] / self.seen


class TerminateOnNaN(Callback):
    """Callback that terminates training when a NaN loss is encountered.
    """

    def __init__(self):
        super(TerminateOnNaN, self).__init__()

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        loss = logs.get('loss')
        if loss is not None:
            if np.isnan(loss) or np.isinf(loss):
                print('Batch %d: Invalid loss, terminating training' % (batch))
                self.model.stop_training = True


class History(Callback):
    """Callback that records events into a `History` object.

    This callback is automatically applied to
    every Keras model. The `History` object
    gets returned by the `fit` method of models.
    """

    def on_train_begin(self, logs=None):
        self.epoch = []
        self.history = {}

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epoch.append(epoch)
        for k, v in logs.items():
            self.history.setdefault(k, []).append(v)


class ModelCheckpoint(Callback):
    """Save the model after every epoch.

    `filepath` can contain named formatting options,
    which will be filled the value of `epoch` and
    keys in `logs` (passed in `on_epoch_end`).

    For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
    then the model checkpoints will be saved with the epoch number and
    the validation loss in the filename.

    # Arguments
        filepath: string, path to save the model file.
        monitor: quantity to monitor.
        verbose: verbosity mode, 0 or 1.
        save_best_only: if `save_best_only=True`,
            the latest best model according to
            the quantity monitored will not be overwritten.
        mode: one of {auto, min, max}.
            If `save_best_only=True`, the decision
            to overwrite the current save file is made
            based on either the maximization or the
            minimization of the monitored quantity. For `val_acc`,
            this should be `max`, for `val_loss` this should
            be `min`, etc. In `auto` mode, the direction is
            automatically inferred from the name of the monitored quantity.
        save_weights_only: if True, then only the model's weights will be
            saved (`torch.save(self.model.state_dict(), filepath)`), else the full model
            is saved (`torch.save(self.model.state_dict(), filepath)`).
        period: Interval (number of epochs) between checkpoints.
    """

    def __init__(self, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf

    def on_epoch_end(self, epoch, logs=None):
        import torch
        logs = logs or {}
        self.epochs_since_last_save += 1
        if self.epochs_since_last_save >= self.period:
            self.epochs_since_last_save = 0
            filepath = self.filepath.format(epoch=epoch + 1, **logs)
            if self.save_best_only:
                current = logs.get(self.monitor)
                if current is None:
                    warnings.warn('Can save best model only with %s available, '
                                  'skipping.' % (self.monitor), RuntimeWarning)
                else:
                    if self.monitor_op(current, self.best):
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
                                  ' saving model to %s'
                                  % (epoch + 1, self.monitor, self.best,
                                     current, filepath))
                        self.best = current
                        if self.save_weights_only:
                            torch.save(self.model.state_dict(), filepath)
                        else:
                            torch.save(self.model.state_dict(), filepath)
                    else:
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s did not improve' %
                                  (epoch + 1, self.monitor))
            else:
                if self.verbose > 0:
                    print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
                if self.save_weights_only:
                    torch.save(self.model.state_dict(), filepath)
                else:
                    torch.save(self.model.state_dict(), filepath)


class EarlyStopping(Callback):
    """Stop training when a monitored quantity has stopped improving.

    # Arguments
        monitor: quantity to be monitored.
        min_delta: minimum change in the monitored quantity
            to qualify as an improvement, i.e. an absolute
            change of less than min_delta, will count as no
            improvement.
        patience: number of epochs with no improvement
            after which training will be stopped.
        verbose: verbosity mode.
        mode: one of {auto, min, max}. In `min` mode,
            training will stop when the quantity
            monitored has stopped decreasing; in `max`
            mode it will stop when the quantity
            monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred
            from the name of the monitored quantity.
    """

    def __init__(self, monitor='val_loss',
                 min_delta=0, patience=0, verbose=0, mode='auto'):
        super(EarlyStopping, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.min_delta = min_delta
        self.wait = 0
        self.stopped_epoch = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('EarlyStopping mode %s is unknown, '
                          'fallback to auto mode.' % mode,
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
        elif mode == 'max':
            self.monitor_op = np.greater
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
            else:
                self.monitor_op = np.less

        if self.monitor_op == np.greater:
            self.min_delta *= 1
        else:
            self.min_delta *= -1

    def on_train_begin(self, logs=None):
        # Allow instances to be re-used
        self.wait = 0
        self.stopped_epoch = 0
        self.best = np.Inf if self.monitor_op == np.less else -np.Inf

    def on_epoch_end(self, epoch, logs=None):
        current = logs.get(self.monitor)
        if current is None:
            warnings.warn(
                'Early stopping conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
            )
            return
        if self.monitor_op(current - self.min_delta, self.best):
            self.best = current
            self.wait = 0
        else:
            self.wait += 1
            if self.wait >= self.patience:
                self.stopped_epoch = epoch
                self.model.stop_training = True

    def on_train_end(self, logs=None):
        if self.stopped_epoch > 0 and self.verbose > 0:
            print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))


class RemoteMonitor(Callback):
    """Callback used to stream events to a server.

    Requires the `requests` library.
    Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
    HTTP POST, with a `images` argument which is a
    JSON-encoded dictionary of event images.

    # Arguments
        root: String; root url of the target server.
        path: String; path relative to `root` to which the events will be sent.
        field: String; JSON field under which the images will be stored.
        headers: Dictionary; optional custom HTTP headers.
    """

    def __init__(self,
                 root='http://localhost:9000',
                 path='/publish/epoch/end/',
                 field='images',
                 headers=None):
        super(RemoteMonitor, self).__init__()

        self.root = root
        self.path = path
        self.field = field
        self.headers = headers

    def on_epoch_end(self, epoch, logs=None):
        if requests is None:
            raise ImportError('RemoteMonitor requires '
                              'the `requests` library.')
        logs = logs or {}
        send = {}
        send['epoch'] = epoch
        for k, v in logs.items():
            if isinstance(v, (np.ndarray, np.generic)):
                send[k] = v.item()
            else:
                send[k] = v
        try:
            requests.post(self.root + self.path,
                          {self.field: json.dumps(send)},
                          headers=self.headers)
        except requests.exceptions.RequestException:
            warnings.warn('Warning: could not reach RemoteMonitor '
                          'root server at ' + str(self.root))


class TensorBoard(Callback):
    """TensorBoard basic visualizations.

    [TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard)
    is a visualization tool provided with TensorFlow.

    This callback writes a log for TensorBoard, which allows
    you to visualize dynamic graphs of your training and test
    metrics, as well as activation histograms for the different
    layers in your model.

    If you have installed TensorFlow with pip, you should be able
    to launch TensorBoard from the command line:
    ```sh
    tensorboard --logdir=/full_path_to_your_logs
    ```

    When using a backend other than TensorFlow, TensorBoard will still work
    (if you have TensorFlow installed), but the only feature available will
    be the display of the losses and metrics plots.

    # Arguments
        log_dir: the path of the directory where to save the log
            files to be parsed by TensorBoard.
        histogram_freq: frequency (in epochs) at which to compute activation
            and weight histograms for the layers of the model. If set to 0,
            histograms won't be computed. Validation images (or split) must be
            specified for histogram visualizations.
        write_graph: whether to visualize the graph in TensorBoard.
            The log file can become quite large when
            write_graph is set to True.
        write_grads: whether to visualize gradient histograms in TensorBoard.
            `histogram_freq` must be greater than 0.
        batch_size: size of batch of inputs to feed to the network
            for histograms computation.
        write_images: whether to write model weights to visualize as
            image in TensorBoard.
        embeddings_freq: frequency (in epochs) at which selected embedding
            layers will be saved.
        embeddings_layer_names: a list of names of layers to keep eye on. If
            None or empty list all the embedding layer will be watched.
        embeddings_metadata: a dictionary which maps layer name to a file name
            in which metadata for this embedding layer is saved. See the
            [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
            about metadata files format. In case if the same metadata file is
            used for all embedding layers, string can be passed.
    """

    def __init__(self, log_dir='./logs',
                 histogram_freq=0,
                 batch_size=32,
                 write_graph=True,
                 write_grads=False,
                 write_images=False,
                 embeddings_freq=0,
                 embeddings_layer_names=None,
                 embeddings_metadata=None):
        super(TensorBoard, self).__init__()
        global tf, projector
        try:
            import tensorflow as tf
            from tensorflow.contrib.tensorboard.plugins import projector
        except ImportError:
            raise ImportError('You need the TensorFlow module installed to use TensorBoard.')

        if K.backend() != 'tensorflow':
            if histogram_freq != 0:
                warnings.warn('You are not using the TensorFlow backend. '
                              'histogram_freq was set to 0')
                histogram_freq = 0
            if write_graph:
                warnings.warn('You are not using the TensorFlow backend. '
                              'write_graph was set to False')
                write_graph = False
            if write_images:
                warnings.warn('You are not using the TensorFlow backend. '
                              'write_images was set to False')
                write_images = False
            if embeddings_freq != 0:
                warnings.warn('You are not using the TensorFlow backend. '
                              'embeddings_freq was set to 0')
                embeddings_freq = 0

        self.log_dir = log_dir
        self.histogram_freq = histogram_freq
        self.merged = None
        self.write_graph = write_graph
        self.write_grads = write_grads
        self.write_images = write_images
        self.embeddings_freq = embeddings_freq
        self.embeddings_layer_names = embeddings_layer_names
        self.embeddings_metadata = embeddings_metadata or {}
        self.batch_size = batch_size

    def set_model(self, model):
        self.model = model
        if K.backend() == 'tensorflow':
            self.sess = K.get_session()
        if self.histogram_freq and self.merged is None:
            for layer in self.model.layers:

                for weight in layer.weights:
                    mapped_weight_name = weight.name.replace(':', '_')
                    tf.summary.histogram(mapped_weight_name, weight)
                    if self.write_grads:
                        grads = model.optimizer.get_gradients(model.total_loss,
                                                              weight)

                        def is_indexed_slices(grad):
                            return type(grad).__name__ == 'IndexedSlices'
                        grads = [
                            grad.values if is_indexed_slices(grad) else grad
                            for grad in grads]
                        tf.summary.histogram('{}_grad'.format(mapped_weight_name), grads)
                    if self.write_images:
                        w_img = tf.squeeze(weight)
                        shape = K.int_shape(w_img)
                        if len(shape) == 2:  # dense layer kernel case
                            if shape[0] > shape[1]:
                                w_img = tf.transpose(w_img)
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       shape[1],
                                                       1])
                        elif len(shape) == 3:  # convnet case
                            if K.image_data_format() == 'channels_last':
                                # switch to channels_first to display
                                # every kernel as a separate image
                                w_img = tf.transpose(w_img, perm=[2, 0, 1])
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [shape[0],
                                                       shape[1],
                                                       shape[2],
                                                       1])
                        elif len(shape) == 1:  # bias case
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       1,
                                                       1])
                        else:
                            # not possible to handle 3D convnets etc.
                            continue

                        shape = K.int_shape(w_img)
                        assert len(shape) == 4 and shape[-1] in [1, 3, 4]
                        tf.summary.image(mapped_weight_name, w_img)

                if hasattr(layer, 'output'):
                    tf.summary.histogram('{}_out'.format(layer.name),
                                         layer.output)
        self.merged = tf.summary.merge_all()

        if self.write_graph:
            self.writer = tf.summary.FileWriter(self.log_dir,
                                                self.sess.graph)
        else:
            self.writer = tf.summary.FileWriter(self.log_dir)

        if self.embeddings_freq:
            embeddings_layer_names = self.embeddings_layer_names

            if not embeddings_layer_names:
                embeddings_layer_names = [layer.name for layer in self.model.layers
                                          if type(layer).__name__ == 'Embedding']

            embeddings = {layer.name: layer.weights[0]
                          for layer in self.model.layers
                          if layer.name in embeddings_layer_names}

            self.saver = tf.train.Saver(list(embeddings.values()))

            embeddings_metadata = {}

            if not isinstance(self.embeddings_metadata, str):
                embeddings_metadata = self.embeddings_metadata
            else:
                embeddings_metadata = {layer_name: self.embeddings_metadata
                                       for layer_name in embeddings.keys()}

            config = projector.ProjectorConfig()
            self.embeddings_ckpt_path = os.path.join(self.log_dir,
                                                     'keras_embedding.ckpt')

            for layer_name, tensor in embeddings.items():
                embedding = config.embeddings.add()
                embedding.tensor_name = tensor.name

                if layer_name in embeddings_metadata:
                    embedding.metadata_path = embeddings_metadata[layer_name]

            projector.visualize_embeddings(self.writer, config)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        if not self.validation_data and self.histogram_freq:
            raise ValueError('If printing histograms, validation_data must be '
                             'provided, and cannot be a generator.')
        if self.validation_data and self.histogram_freq:
            if epoch % self.histogram_freq == 0:

                val_data = self.validation_data
                tensors = (self.model.inputs +
                           self.model.targets +
                           self.model.sample_weights)

                if self.model.uses_learning_phase:
                    tensors += [K.learning_phase()]

                assert len(val_data) == len(tensors)
                val_size = val_data[0].shape[0]
                i = 0
                while i < val_size:
                    step = min(self.batch_size, val_size - i)
                    if self.model.uses_learning_phase:
                        # do not slice the learning phase
                        batch_val = [x[i:i + step] for x in val_data[:-1]]
                        batch_val.append(val_data[-1])
                    else:
                        batch_val = [x[i:i + step] for x in val_data]
                    assert len(batch_val) == len(tensors)
                    feed_dict = dict(zip(tensors, batch_val))
                    result = self.sess.run([self.merged], feed_dict=feed_dict)
                    summary_str = result[0]
                    self.writer.add_summary(summary_str, epoch)
                    i += self.batch_size

        if self.embeddings_freq and self.embeddings_ckpt_path:
            if epoch % self.embeddings_freq == 0:
                self.saver.save(self.sess,
                                self.embeddings_ckpt_path,
                                epoch)

        for name, value in logs.items():
            if name in ['batch', 'size']:
                continue
            summary = tf.Summary()
            summary_value = summary.value.add()
            summary_value.simple_value = value.item()
            summary_value.tag = name
            self.writer.add_summary(summary, epoch)
        self.writer.flush()

    def on_train_end(self, _):
        self.writer.close()


class CSVLogger(Callback):
    """Callback that streams epoch results to a csv file.

    Supports all values that can be represented as a string,
    including 1D iterables such as np.ndarray.

    # Example

    ```python
    csv_logger = CSVLogger('training.log')
    model.fit(X_train, Y_train, callbacks=[csv_logger])
    ```

    # Arguments
        filename: filename of the csv file, e.g. 'run/log.csv'.
        separator: string used to separate elements in the csv file.
        append: True: append if file exists (useful for continuing
            training). False: overwrite existing file,
        output_on_train_end: An additional output file to write to
            write to when training ends. An example is
            CSVLogger(filename='./mylog.csv', output_on_train_end=os.sys.stdout)
    """

    def __init__(self, filename, separator=',', append=False, output_on_train_end=None):
        self.sep = separator
        self.filename = filename
        self.append = append
        self.writer = None
        self.keys = None
        self.append_header = True
        self.file_flags = 'b' if six.PY2 and os.name == 'nt' else ''
        self.output_on_train_end = output_on_train_end
        super(CSVLogger, self).__init__()

    def on_train_begin(self, logs=None):
        if self.append:
            if os.path.exists(self.filename):
                with open(self.filename, 'r' + self.file_flags) as f:
                    self.append_header = not bool(len(f.readline()))
            self.csv_file = open(self.filename, 'a' + self.file_flags)
        else:
            self.csv_file = open(self.filename, 'w' + self.file_flags)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        def handle_value(k):
            is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
            if isinstance(k, six.string_types):
                return k
            elif isinstance(k, Iterable) and not is_zero_dim_ndarray:
                return '"[%s]"' % (', '.join(map(str, k)))
            else:
                return k

        if self.keys is None:
            self.keys = sorted(logs.keys())

        if self.model is not None and getattr(self.model, 'stop_training', False):
            # We set NA so that csv parsers do not fail for this last epoch.
            logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys])

        if not self.writer:
            class CustomDialect(csv.excel):
                delimiter = self.sep

            self.writer = csv.DictWriter(self.csv_file,
                                         fieldnames=['epoch'] + self.keys, dialect=CustomDialect)
            if self.append_header:
                self.writer.writeheader()

        row_dict = OrderedDict({'epoch': epoch})
        row_dict.update((key, handle_value(logs[key])) for key in self.keys)
        self.writer.writerow(row_dict)
        self.csv_file.flush()

    def on_train_end(self, logs=None):
        self.csv_file.close()
        if os.path.exists(self.filename):
            with open(self.filename, 'r' + self.file_flags) as f:
                print(f.read(), file=self.output_on_train_end)
        self.writer = None


class LambdaCallback(Callback):
    r"""Callback for creating simple, custom callbacks on-the-fly.

    This callback is constructed with anonymous functions that will be called
    at the appropriate time. Note that the callbacks expects positional
    arguments, as:

     - `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
        `epoch`, `logs`
     - `on_batch_begin` and `on_batch_end` expect two positional arguments:
        `batch`, `logs`
     - `on_train_begin` and `on_train_end` expect one positional argument:
        `logs`

    # Arguments
        on_epoch_begin: called at the beginning of every epoch.
        on_epoch_end: called at the end of every epoch.
        on_batch_begin: called at the beginning of every batch.
        on_batch_end: called at the end of every batch.
        on_train_begin: called at the beginning of model training.
        on_train_end: called at the end of model training.

    # Example

    ```python
    # Print the batch number at the beginning of every batch.
    batch_print_callback = LambdaCallback(
        on_batch_begin=lambda batch,logs: print(batch))

    # Stream the epoch loss to a file in JSON format. The file content
    # is not well-formed JSON but rather has a JSON object per line.
    import json
    json_log = open('loss_log.json', mode='wt', buffering=1)
    json_logging_callback = LambdaCallback(
        on_epoch_end=lambda epoch, logs: json_log.write(
            json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
        on_train_end=lambda logs: json_log.close()
    )

    # Terminate some processes after having finished model training.
    processes = ...
    cleanup_callback = LambdaCallback(
        on_train_end=lambda logs: [
            p.terminate() for p in processes if p.is_alive()])

    model.fit(...,
              callbacks=[batch_print_callback,
                         json_logging_callback,
                         cleanup_callback])
    ```
    """

    def __init__(self,
                 on_epoch_begin=None,
                 on_epoch_end=None,
                 on_batch_begin=None,
                 on_batch_end=None,
                 on_train_begin=None,
                 on_train_end=None,
                 **kwargs):
        super(LambdaCallback, self).__init__()
        self.__dict__.update(kwargs)
        if on_epoch_begin is not None:
            self.on_epoch_begin = on_epoch_begin
        else:
            self.on_epoch_begin = lambda epoch, logs: None
        if on_epoch_end is not None:
            self.on_epoch_end = on_epoch_end
        else:
            self.on_epoch_end = lambda epoch, logs: None
        if on_batch_begin is not None:
            self.on_batch_begin = on_batch_begin
        else:
            self.on_batch_begin = lambda batch, logs: None
        if on_batch_end is not None:
            self.on_batch_end = on_batch_end
        else:
            self.on_batch_end = lambda batch, logs: None
        if on_train_begin is not None:
            self.on_train_begin = on_train_begin
        else:
            self.on_train_begin = lambda logs: None
        if on_train_end is not None:
            self.on_train_end = on_train_end
        else:
            self.on_train_end = lambda logs: None
from sys import stderr


class TQDMCallback(Callback):
    def __init__(self, outer_description="Training",
                 inner_description_initial="Epoch: {epoch}",
                 inner_description_update="Epoch: {epoch} - {metrics}",
                 metric_format="{name}: {value:0.3f}",
                 separator=", ",
                 leave_inner=True,
                 leave_outer=True,
                 show_inner=True,
                 show_outer=True,
                 output_file=stderr,
                 initial=0):
        """
        Construct a callback that will create and update progress bars.

        :param outer_description: string for outer progress bar
        :param inner_description_initial: initial format for epoch ("Epoch: {epoch}")
        :param inner_description_update: format after metrics collected ("Epoch: {epoch} - {metrics}")
        :param metric_format: format for each metric name/value pair ("{name}: {value:0.3f}")
        :param separator: separator between metrics (", ")
        :param leave_inner: True to leave inner bars
        :param leave_outer: True to leave outer bars
        :param show_inner: False to hide inner bars
        :param show_outer: False to hide outer bar
        :param output_file: output file (default sys.stderr)
        :param initial: Initial counter state
        """
        self.outer_description = outer_description
        self.inner_description_initial = inner_description_initial
        self.inner_description_update = inner_description_update
        self.metric_format = metric_format
        self.separator = separator
        self.leave_inner = leave_inner
        self.leave_outer = leave_outer
        self.show_inner = show_inner
        self.show_outer = show_outer
        self.output_file = output_file
        self.tqdm_outer = None
        self.tqdm_inner = None
        self.epoch = None
        self.running_logs = None
        self.inner_count = None
        self.initial = initial

    def tqdm(self, desc, total, leave, initial=0):
        """
        Extension point. Override to provide custom options to tqdm initializer.
        :param desc: Description string
        :param total: Total number of updates
        :param leave: Leave progress bar when done
        :param initial: Initial counter state
        :return: new progress bar
        """
        return tqdm(desc=desc, total=total, leave=leave, file=self.output_file, initial=initial)

    def build_tqdm_outer(self, desc, total):
        """
        Extension point. Override to provide custom options to outer progress bars (Epoch loop)
        :param desc: Description
        :param total: Number of epochs
        :return: new progress bar
        """
        return self.tqdm(desc=desc, total=total, leave=self.leave_outer, initial=self.initial)

    def build_tqdm_inner(self, desc, total):
        """
        Extension point. Override to provide custom options to inner progress bars (Batch loop)
        :param desc: Description
        :param total: Number of batches
        :return: new progress bar
        """
        return self.tqdm(desc=desc, total=total, leave=self.leave_inner)

    def on_epoch_begin(self, epoch, logs={}):
        self.epoch = epoch
        desc = self.inner_description_initial.format(epoch=self.epoch)
        self.mode = 0  # samples
        if 'samples' in self.params:
            self.inner_total = self.params['samples']
        elif 'nb_sample' in self.params:
            self.inner_total = self.params['nb_sample']
        else:
            self.mode = 1  # steps
            self.inner_total = self.params['steps']
        if self.show_inner:
            self.tqdm_inner = self.build_tqdm_inner(desc=desc, total=self.inner_total)
        self.inner_count = 0
        self.running_logs = {}

    def on_epoch_end(self, epoch, logs={}):
        metrics = self.format_metrics(logs)
        desc = self.inner_description_update.format(epoch=epoch, metrics=metrics)
        if self.show_inner:
            self.tqdm_inner.desc = desc
            # set miniters and mininterval to 0 so last update displays
            self.tqdm_inner.miniters = 0
            self.tqdm_inner.mininterval = 0
            self.tqdm_inner.update(self.inner_total - self.tqdm_inner.n)
            self.tqdm_inner.close()
        if self.show_outer:
            self.tqdm_outer.update(1)

    def on_batch_begin(self, batch, logs={}):
        pass

    def on_batch_end(self, batch, logs={}):
        if self.mode == 0:
            update = logs['size']
        else:
            update = 1
        self.inner_count += update
        if self.inner_count < self.inner_total:
            self.append_logs(logs)
            metrics = self.format_metrics(self.running_logs)
            desc = self.inner_description_update.format(epoch=self.epoch, metrics=metrics)
            if self.show_inner:
                self.tqdm_inner.desc = desc
                self.tqdm_inner.update(update)

    def on_train_begin(self, logs={}):
        if self.show_outer:
            epochs = (self.params['epochs'] if 'epochs' in self.params
                      else self.params['nb_epoch'])
            self.tqdm_outer = self.build_tqdm_outer(desc=self.outer_description,
                                                    total=epochs)

    def on_train_end(self, logs={}):
        if self.show_outer:
            self.tqdm_outer.close()

    def append_logs(self, logs):
        metrics = self.params['metrics']
        for metric, value in six.iteritems(logs):
            if metric in metrics:
                if metric in self.running_logs:
                    self.running_logs[metric].append(value[()])
                else:
                    self.running_logs[metric] = [value[()]]

    def format_metrics(self, logs):
        metrics = self.params['metrics']
        strings = [self.metric_format.format(name=metric, value=np.mean(logs[metric], axis=None)) for metric in metrics
                   if
                   metric in logs]
        return self.separator.join(strings)