File size: 7,475 Bytes
835929e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0954cd7
a31978b
 
 
 
835929e
 
a31978b
835929e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2177c5
835929e
a31978b
835929e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835929e
 
 
 
b549faa
 
a31978b
835929e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cbdfd
 
835929e
00cbdfd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import tensorflow as tf
from tensorflow.keras.applications import densenet
from tensorflow.keras.applications.densenet import preprocess_input
from tensorflow.keras.layers import Dense, Dropout, Input, Conv2D
from tensorflow.keras.models import Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import os
import cv2
import tensorflow as tf
import re
import pickle
from PIL import Image
from skimage.transform import resize
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
from tqdm import tqdm
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
import time
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, LSTM, Input, Embedding, Conv2D, Concatenate, Flatten, Add, Dropout, GRU
import random
import datetime




def getModel():
    
    embedding_matrix_vocab = np.load('my_embedding_matrix.npy')
    input1 = Input(shape=(2048,), name='Image_input')
    dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)

    input2 = Input(shape=(153,), name='Text_Input')
    embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
                weights=[embedding_matrix_vocab], name="Embedding_layer")
    emb = embedding_layer(input2)

    LSTM1 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
            recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
            bias_initializer=tf.keras.initializers.zeros(), return_sequences=True, name="LSTM1")(emb)
    #LSTM1_output = LSTM1(emb)

    LSTM2 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
            kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
            recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
            bias_initializer=tf.keras.initializers.zeros(), name="LSTM2")
    LSTM2_output = LSTM2(LSTM1)

    dropout1 = Dropout(0.5, name='dropout1')(LSTM2_output)

    dec =  tf.keras.layers.Add()([dense1, dropout1])

    fc1 = Dense(256, activation='relu', kernel_initializer=tf.keras.initializers.he_normal(seed = 63), name='fc1')
    fc1_output = fc1(dec)

    dropout2 = Dropout(0.4, name='dropout2')(fc1_output)

    output_layer = Dense(1427, activation='softmax', name='Output_layer')
    output = output_layer(dropout2)

    encoder_decoder = Model(inputs = [input1, input2], outputs = output)

    encoder_decoder.load_weights("encoder_decoder_epoch_5.h5")
    # encoder

    encoder_input = encoder_decoder.input[0]
    encoder_output = encoder_decoder.get_layer('dense_encoder').output
    encoder_model = Model(encoder_input, encoder_output)

    # decoder#
    text_input = encoder_decoder.input[1]
    enc_output = Input(shape=(256,), name='Enc_Output')
    text_output = encoder_decoder.get_layer('LSTM2').output
    add1 = tf.keras.layers.Add()([text_output, enc_output])
    fc_1 = fc1(add1)
    decoder_output = output_layer(fc_1)

    decoder_model = Model(inputs = [text_input, enc_output], outputs = decoder_output)

    return encoder_model,decoder_model
    
# def getModel(image):
#     embedding_matrix_vocab = np.load('my_embedding_matrix.npy')

#     input1 = Input(shape=(2048), name='Image_input')
#     dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)

#     input2 = Input(shape=(153), name='Text_Input')
#     embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
#                 weights=[embedding_matrix_vocab], name="Embedding_layer")
#     emb = embedding_layer(input2)

#     LSTM1 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
#             kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
#             recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
#             bias_initializer=tf.keras.initializers.zeros(), return_sequences=True, name="LSTM1")(emb)
#     #LSTM1_output = LSTM1(emb)

#     LSTM2 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
#             kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
#             recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
#             bias_initializer=tf.keras.initializers.zeros(), name="LSTM2")
#     LSTM2_output = LSTM2(LSTM1)

#     dropout1 = Dropout(0.5, name='dropout1')(LSTM2_output)

#     dec =  tf.keras.layers.Add()([dense1, dropout1])

#     fc1 = Dense(256, activation='relu', kernel_initializer=tf.keras.initializers.he_normal(seed = 63), name='fc1')
#     fc1_output = fc1(dec)

#     dropout2 = Dropout(0.4, name='dropout2')(fc1_output)

#     output_layer = Dense(1427, activation='softmax', name='Output_layer')
#     output = output_layer(dropout2)

#     encoder_decoder = Model(inputs = [input1, input2], outputs = output)

#     encoder_decoder.load_weights("encoder_decoder_epoch_5.h5")
#     # encoder
  
#     encoder_input = encoder_decoder.input[0]
#     encoder_output = encoder_decoder.get_layer('dense_encoder').output
#     encoder_model = Model(encoder_input, encoder_output)

#     # decoder#
#     text_input = encoder_decoder.input[1]
#     enc_output = Input(shape=(256,), name='Enc_Output')
#     text_output = encoder_decoder.get_layer('LSTM2').output
#     add1 = tf.keras.layers.Add()([text_output, enc_output])
#     fc_1 = fc1(add1)
#     decoder_output = output_layer(fc_1)

#     decoder_model = Model(inputs = [text_input, enc_output], outputs = decoder_output)

#     return encoder_model,decoder_model


def greedysearch(image):
    # Open the pickle file for reading
    train_data = pd.read_csv('Final_Train_Data.csv')
    y_train = train_data['Report']
    encoder_model, decoder_model = getModel()
    input_ = 'startseq'
    image_features = encoder_model.predict(image)
    result = []
    tokenizer = Tokenizer(filters='!"#$%&()*+,-/:;<=>?@[\]^_`{|}~\t\n')
    tokenizer.fit_on_texts(y_train.values)
    for i in range(153):
        input_tok = [tokenizer.word_index[w] for w in input_.split()]
        input_padded = pad_sequences([input_tok], 153, padding='post')
        predictions = decoder_model.predict([input_padded, image_features])
        arg = np.argmax(predictions)
        if arg != 7:   # endseq
            result.append(tokenizer.index_word[arg])
            input_ = input_ + ' ' + tokenizer.index_word[arg]
        else:
            break
    rep = ' '.join(e for e in result)
    return rep


def get_result(img):
    pre_Report = greedysearch(img)
    print('------------------------------------------------------------------------------------------------------')
    print("Predicted Report : ",pre_Report)
    print('------------------------------------------------------------------------------------------------------')
    return pre_Report


# with open('/content/Image_features_ecoder_decoder.pickle', 'rb') as f:
#       Xnet_features = pickle.load(f)

# image = Xnet_features["/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR545_IM-2149_0"]
# get_result(image)