File size: 9,891 Bytes
d290c84
 
 
 
 
 
 
 
 
d53e0a8
 
 
 
1c2c7ef
af765ed
d290c84
 
 
 
 
a77dcc0
df64df2
 
 
 
d290c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303a358
c8b938d
 
795a44c
d290c84
 
795a44c
d290c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d79825
d290c84
caaba7e
d290c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8584391
 
 
 
 
 
 
d290c84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import time
import pickle
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
from PIL import Image
import cv2

from models import *
from dataset import *
from loss import *
from build_tag import *
from build_vocab import *


class CaptionSampler(object):
    def __init__(self):
        # Default configuration values
        self.args = {
            "model_dir": "model/",
            "image_dir": "",
            "caption_json": "",
            "vocab_path": "vocab.pkl",
            "file_lists": "",
            "load_model_path": "train_best_loss.pth.tar",
            "resize": 224,
            "cam_size": 224,
            "generate_dir": "cam",
            "result_path": "results",
            "result_name": "debug",
            "momentum": 0.1,
            "visual_model_name": "densenet201", 
            "pretrained": False,
            "classes": 210,
            "sementic_features_dim": 512,
            "k": 10, 
            "attention_version": "v4",
            "embed_size": 512,
            "hidden_size": 512,
            "sent_version": "v1",
            "sentence_num_layers": 2,
            "dropout": 0.1,
            "word_num_layers": 1,
            "s_max": 10,
            "n_max": 30,
            "batch_size": 8,
            "lambda_tag": 10000,
            "lambda_stop": 10,
            "lambda_word": 1,
            "cuda": False  # Keep CUDA disabled by default
        }

        self.vocab = self.__init_vocab()
        self.tagger = self.__init_tagger()
        self.transform = self.__init_transform()
        self.model_state_dict = self.__load_mode_state_dict()

        self.extractor = self.__init_visual_extractor()
        self.mlc = self.__init_mlc()
        self.co_attention = self.__init_co_attention()
        self.sentence_model = self.__init_sentence_model()
        self.word_model = self.__init_word_word()

        self.ce_criterion = self._init_ce_criterion()
        self.mse_criterion = self._init_mse_criterion()

    @staticmethod
    def _init_ce_criterion():
        return nn.CrossEntropyLoss(size_average=False, reduce=False)

    @staticmethod
    def _init_mse_criterion():
        return nn.MSELoss()


    def sample(self, image_file):
        self.extractor.eval()
        self.mlc.eval()
        self.co_attention.eval()
        self.sentence_model.eval()
        self.word_model.eval()

 
        imageData = self.transform(image_file)
        imageData = imageData.unsqueeze_(0)

    
        image = self.__to_var(imageData, requires_grad=False)
    
        visual_features, avg_features = self.extractor.forward(image)
    
        tags, semantic_features = self.mlc(avg_features)
        sentence_states = None
        prev_hidden_states = self.__to_var(torch.zeros(image.shape[0], 1, self.args["hidden_size"]))
    
        pred_sentences = []
    
        for i in range(self.args["s_max"]):
            ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features, semantic_features, prev_hidden_states)
            topic, p_stop, hidden_state, sentence_states = self.sentence_model.forward(ctx,
                                                                                       prev_hidden_states,
                                                                                       sentence_states)
            p_stop = p_stop.squeeze(1)
            p_stop = torch.max(p_stop, 1)[1].unsqueeze(1)

            start_tokens = np.zeros((topic.shape[0], 1))
            start_tokens[:, 0] = self.vocab('<start>')
            start_tokens = self.__to_var(torch.Tensor(start_tokens).long(), requires_grad=False)

            sampled_ids = self.word_model.sample(topic, start_tokens)
            prev_hidden_states = hidden_state

            sampled_ids = sampled_ids * p_stop.numpy()

            
            pred_sentences.append(self.__vec2sent(sampled_ids[0]))
    
        return pred_sentences


    def __init_cam_path(self, image_file):
        generate_dir = os.path.join(self.args["model_dir"], self.args["generate_dir"])
        if not os.path.exists(generate_dir):
            os.makedirs(generate_dir)

        image_dir = os.path.join(generate_dir, image_file)

        if not os.path.exists(image_dir):
            os.makedirs(image_dir)
        return image_dir

    def __save_json(self, result):
        result_path = os.path.join(self.args["model_dir"], self.args["result_path"])
        if not os.path.exists(result_path):
            os.makedirs(result_path)
        with open(os.path.join(result_path, '{}.json'.format(self.args["result_name"])), 'w') as f:
            json.dump(result, f)

    def __load_mode_state_dict(self):
        try:
            model_state_dict = torch.load(os.path.join(self.args["model_dir"], self.args["load_model_path"]), map_location=torch.device('cpu'))
            print("[Load Model-{} Succeed!]".format(self.args["load_model_path"]))
            print("Load From Epoch {}".format(model_state_dict['epoch']))
            return model_state_dict
        except Exception as err:
            print("[Load Model Failed] {}".format(err))
            raise err

    def __init_tagger(self):
        return Tag()

    def __vec2sent(self, array):
        sampled_caption = []
        for word_id in array:
            word = self.vocab.get_word_by_id(word_id)
            if word == '<start>':
                continue
            if word == '<end>' or word == '<pad>':
                break
            sampled_caption.append(word)
        return ' '.join(sampled_caption)

    def __init_vocab(self):
        with open('vocab.pkl', 'rb') as f:
            vocab = pickle.load(f)
            print(vocab)
        return vocab

    def __init_data_loader(self, file_list):
        data_loader = get_loader(image_dir=self.args.image_dir,
                                 caption_json=self.args.caption_json,
                                 file_list=file_list,
                                 vocabulary=self.vocab,
                                 transform=self.transform,
                                 batch_size=self.args.batch_size,
                                 s_max=self.args.s_max,
                                 n_max=self.args.n_max,
                                 shuffle=False)
        return data_loader

    def __init_transform(self):
        transform = transforms.Compose([
            transforms.Resize((self.args["resize"], self.args["resize"])),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406),
                                 (0.229, 0.224, 0.225))])
        return transform

    def __to_var(self, x, requires_grad=True):
        if self.args["cuda"]:
            x = x.cuda()
        return Variable(x, requires_grad=requires_grad)

    def __init_visual_extractor(self):
        model = VisualFeatureExtractor(model_name=self.args["visual_model_name"],
                                       pretrained=self.args["pretrained"])

        if self.model_state_dict is not None:
            print("Visual Extractor Loaded!")
            model.load_state_dict(self.model_state_dict['extractor'])

        if self.args["cuda"]:
            model = model.cuda()

        return model

    def __init_mlc(self):
        model = MLC(classes=self.args["classes"],
                    sementic_features_dim=self.args["sementic_features_dim"],
                    fc_in_features=self.extractor.out_features,
                    k=self.args["k"])

        if self.model_state_dict is not None:
            print("MLC Loaded!")
            model.load_state_dict(self.model_state_dict['mlc'])

        if self.args["cuda"]:
            model = model.cuda()

        return model

    def __init_co_attention(self):
        model = CoAttention(version=self.args["attention_version"],
                            embed_size=self.args["embed_size"],
                            hidden_size=self.args["hidden_size"],
                            visual_size=self.extractor.out_features,
                            k=self.args["k"],
                            momentum=self.args["momentum"])

        if self.model_state_dict is not None:
            print("Co-Attention Loaded!")
            model.load_state_dict(self.model_state_dict['co_attention'])

        if self.args["cuda"]:
            model = model.cuda()

        return model

    def __init_sentence_model(self):
        model = SentenceLSTM(version=self.args["sent_version"],
                             embed_size=self.args["embed_size"],
                             hidden_size=self.args["hidden_size"],
                             num_layers=self.args["sentence_num_layers"],
                             dropout=self.args["dropout"],
                             momentum=self.args["momentum"])

        if self.model_state_dict is not None:
            print("Sentence Model Loaded!")
            model.load_state_dict(self.model_state_dict['sentence_model'])

        if self.args["cuda"]:
            model = model.cuda()

        return model

    def __init_word_word(self):
        model = WordLSTM(vocab_size=len(self.vocab),
                         embed_size=self.args["embed_size"],
                         hidden_size=self.args["hidden_size"],
                         num_layers=self.args["word_num_layers"],
                         n_max=self.args["n_max"])

        if self.model_state_dict is not None:
            print("Word Model Loaded!")
            model.load_state_dict(self.model_state_dict['word_model'])

        if self.args["cuda"]:
            model = model.cuda()

        return model


    
    def main(image):
        sampler = CaptionSampler()
        # image = 'sample_images/CXR195_IM-0618-1001.png'
        caption  = sampler.sample(image)
        print(caption[0])
    
        return caption[0]