Jyothirmai's picture
Update cnnrnn.py
d2177c5 verified
raw
history blame
7.48 kB
import tensorflow as tf
from tensorflow.keras.applications import densenet
from tensorflow.keras.applications.densenet import preprocess_input
from tensorflow.keras.layers import Dense, Dropout, Input, Conv2D
from tensorflow.keras.models import Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import os
import cv2
import tensorflow as tf
import re
import pickle
from PIL import Image
from skimage.transform import resize
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
from tqdm import tqdm
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
import time
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, LSTM, Input, Embedding, Conv2D, Concatenate, Flatten, Add, Dropout, GRU
import random
import datetime
def getModel():
embedding_matrix_vocab = np.load('my_embedding_matrix.npy')
input1 = Input(shape=(2048,), name='Image_input')
dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)
input2 = Input(shape=(153,), name='Text_Input')
embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
weights=[embedding_matrix_vocab], name="Embedding_layer")
emb = embedding_layer(input2)
LSTM1 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
bias_initializer=tf.keras.initializers.zeros(), return_sequences=True, name="LSTM1")(emb)
#LSTM1_output = LSTM1(emb)
LSTM2 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
bias_initializer=tf.keras.initializers.zeros(), name="LSTM2")
LSTM2_output = LSTM2(LSTM1)
dropout1 = Dropout(0.5, name='dropout1')(LSTM2_output)
dec = tf.keras.layers.Add()([dense1, dropout1])
fc1 = Dense(256, activation='relu', kernel_initializer=tf.keras.initializers.he_normal(seed = 63), name='fc1')
fc1_output = fc1(dec)
dropout2 = Dropout(0.4, name='dropout2')(fc1_output)
output_layer = Dense(1427, activation='softmax', name='Output_layer')
output = output_layer(dropout2)
encoder_decoder = Model(inputs = [input1, input2], outputs = output)
encoder_decoder.load_weights("encoder_decoder_epoch_5.h5")
# encoder
encoder_input = encoder_decoder.input[0]
encoder_output = encoder_decoder.get_layer('dense_encoder').output
encoder_model = Model(encoder_input, encoder_output)
# decoder#
text_input = encoder_decoder.input[1]
enc_output = Input(shape=(256,), name='Enc_Output')
text_output = encoder_decoder.get_layer('LSTM2').output
add1 = tf.keras.layers.Add()([text_output, enc_output])
fc_1 = fc1(add1)
decoder_output = output_layer(fc_1)
decoder_model = Model(inputs = [text_input, enc_output], outputs = decoder_output)
return encoder_model,decoder_model
# def getModel(image):
# embedding_matrix_vocab = np.load('my_embedding_matrix.npy')
# input1 = Input(shape=(2048), name='Image_input')
# dense1 = Dense(256, kernel_initializer=tf.keras.initializers.glorot_uniform(seed = 56), name='dense_encoder')(input1)
# input2 = Input(shape=(153), name='Text_Input')
# embedding_layer = Embedding(input_dim = 1427, output_dim = 300, input_length=153, mask_zero=True, trainable=False,
# weights=[embedding_matrix_vocab], name="Embedding_layer")
# emb = embedding_layer(input2)
# LSTM1 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
# kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
# recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
# bias_initializer=tf.keras.initializers.zeros(), return_sequences=True, name="LSTM1")(emb)
# #LSTM1_output = LSTM1(emb)
# LSTM2 = LSTM(units=256, activation='tanh', recurrent_activation='sigmoid', use_bias=True,
# kernel_initializer=tf.keras.initializers.glorot_uniform(seed=23),
# recurrent_initializer=tf.keras.initializers.orthogonal(seed=7),
# bias_initializer=tf.keras.initializers.zeros(), name="LSTM2")
# LSTM2_output = LSTM2(LSTM1)
# dropout1 = Dropout(0.5, name='dropout1')(LSTM2_output)
# dec = tf.keras.layers.Add()([dense1, dropout1])
# fc1 = Dense(256, activation='relu', kernel_initializer=tf.keras.initializers.he_normal(seed = 63), name='fc1')
# fc1_output = fc1(dec)
# dropout2 = Dropout(0.4, name='dropout2')(fc1_output)
# output_layer = Dense(1427, activation='softmax', name='Output_layer')
# output = output_layer(dropout2)
# encoder_decoder = Model(inputs = [input1, input2], outputs = output)
# encoder_decoder.load_weights("encoder_decoder_epoch_5.h5")
# # encoder
# encoder_input = encoder_decoder.input[0]
# encoder_output = encoder_decoder.get_layer('dense_encoder').output
# encoder_model = Model(encoder_input, encoder_output)
# # decoder#
# text_input = encoder_decoder.input[1]
# enc_output = Input(shape=(256,), name='Enc_Output')
# text_output = encoder_decoder.get_layer('LSTM2').output
# add1 = tf.keras.layers.Add()([text_output, enc_output])
# fc_1 = fc1(add1)
# decoder_output = output_layer(fc_1)
# decoder_model = Model(inputs = [text_input, enc_output], outputs = decoder_output)
# return encoder_model,decoder_model
def greedysearch(image):
# Open the pickle file for reading
train_data = pd.read_csv('Final_Train_Data.csv')
y_train = train_data['Report']
encoder_model, decoder_model = getModel()
input_ = 'startseq'
image_features = encoder_model.predict(image)
result = []
tokenizer = Tokenizer(filters='!"#$%&()*+,-/:;<=>?@[\]^_`{|}~\t\n')
tokenizer.fit_on_texts(y_train.values)
for i in range(153):
input_tok = [tokenizer.word_index[w] for w in input_.split()]
input_padded = pad_sequences([input_tok], 153, padding='post')
predictions = decoder_model.predict([input_padded, image_features])
arg = np.argmax(predictions)
if arg != 7: # endseq
result.append(tokenizer.index_word[arg])
input_ = input_ + ' ' + tokenizer.index_word[arg]
else:
break
rep = ' '.join(e for e in result)
return rep
def get_result(img):
pre_Report = greedysearch(img)
print('------------------------------------------------------------------------------------------------------')
print("Predicted Report : ",pre_Report)
print('------------------------------------------------------------------------------------------------------')
return pre_Report
# with open('/content/Image_features_ecoder_decoder.pickle', 'rb') as f:
# Xnet_features = pickle.load(f)
# image = Xnet_features["/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR545_IM-2149_0"]
# get_result(image)