Jyothirmai
commited on
Commit
β’
2e77581
1
Parent(s):
a7e52ef
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import clipGPT
|
@@ -11,12 +13,12 @@ from build_vocab import Vocabulary
|
|
11 |
|
12 |
|
13 |
# Caption generation functions
|
14 |
-
def generate_caption_clipgpt(image
|
15 |
-
caption = clipGPT.generate_caption_clipgpt(image
|
16 |
return caption
|
17 |
|
18 |
-
def generate_caption_vitgpt(image
|
19 |
-
caption = vitGPT.generate_caption(image
|
20 |
return caption
|
21 |
|
22 |
def generate_caption_vitCoAtt(image):
|
@@ -26,78 +28,48 @@ def generate_caption_vitCoAtt(image):
|
|
26 |
|
27 |
with gr.Blocks() as demo:
|
28 |
|
|
|
29 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
30 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
31 |
|
32 |
-
|
33 |
-
['sample/CXR192_IM-0598-1001.png', '75', '0.7', 'CLIP-GPT2, ViT-GPT2, ViT-CoAttention', '...'],
|
34 |
-
['https://imgur.com/MLJaWnf', '50' ,'0.8', 'CLIP-GPT2, ViT-CoAttention', '...']
|
35 |
-
]
|
36 |
-
|
37 |
with gr.Row():
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with gr.Row():
|
42 |
-
|
43 |
|
|
|
44 |
|
45 |
-
gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>")
|
46 |
-
|
47 |
-
with gr.Row():
|
48 |
-
with gr.Column():
|
49 |
-
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
|
50 |
-
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7)
|
51 |
-
|
52 |
-
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
53 |
|
54 |
-
|
55 |
caption = gr.Textbox(label="Generated Caption")
|
56 |
-
|
57 |
|
58 |
-
def predict(img,
|
59 |
if model_name == "CLIP-GPT2":
|
60 |
-
return generate_caption_clipgpt(img
|
61 |
elif model_name == "ViT-GPT2":
|
62 |
-
return generate_caption_vitgpt(img
|
63 |
elif model_name == "ViT-CoAttention":
|
64 |
return generate_caption_vitCoAtt(img)
|
65 |
else:
|
66 |
-
return "Caption generation for this model is not yet implemented."
|
67 |
|
68 |
-
def predict_from_table(row, model_name):
|
69 |
-
img_url = row['image']
|
70 |
-
max_tokens = row['max token']
|
71 |
-
temperature = row['temp']
|
72 |
-
|
73 |
-
image_display.update(value=img_url) # Update the image display
|
74 |
-
|
75 |
-
# Load the image
|
76 |
-
img = Image.open(io.imread(img_url))
|
77 |
-
|
78 |
-
# Generate the caption
|
79 |
-
if model_name == "CLIP-GPT2":
|
80 |
-
caption = generate_caption_clipgpt(img, max_tokens, temperature)
|
81 |
-
elif model_name == "ViT-GPT2":
|
82 |
-
caption = generate_caption_vitgpt(img, max_tokens, temperature)
|
83 |
-
elif model_name == "ViT-CoAttention":
|
84 |
-
caption = generate_caption_vitCoAtt(img)
|
85 |
-
else:
|
86 |
-
caption = "Caption generation for this model is not yet implemented."
|
87 |
-
|
88 |
-
return image_display, caption # Return both the image and the caption
|
89 |
-
|
90 |
-
# Event handlers
|
91 |
-
generate_button.click(predict, [image, model_choice, max_tokens, temperature], caption)
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
return predict_from_table(row, model_choice)
|
97 |
-
|
98 |
-
# Attach the function to the dataframe
|
99 |
-
image_table.change(dataframe_selected, inputs=[image_table, model_choice], outputs=[image_display, caption])
|
100 |
-
|
101 |
|
102 |
|
103 |
demo.launch()
|
|
|
1 |
+
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import clipGPT
|
|
|
13 |
|
14 |
|
15 |
# Caption generation functions
|
16 |
+
def generate_caption_clipgpt(image):
|
17 |
+
caption = clipGPT.generate_caption_clipgpt(image)
|
18 |
return caption
|
19 |
|
20 |
+
def generate_caption_vitgpt(image):
|
21 |
+
caption = vitGPT.generate_caption(image)
|
22 |
return caption
|
23 |
|
24 |
def generate_caption_vitCoAtt(image):
|
|
|
28 |
|
29 |
with gr.Blocks() as demo:
|
30 |
|
31 |
+
|
32 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
33 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
34 |
|
35 |
+
|
|
|
|
|
|
|
|
|
36 |
with gr.Row():
|
37 |
+
sample_images = [
|
38 |
+
'https://imgur.com/W1pIr9b',
|
39 |
+
'https://imgur.com/MLJaWnf',
|
40 |
+
'https://imgur.com/6XymFW1',
|
41 |
+
'https://imgur.com/zdPjZZ1',
|
42 |
+
'https://imgur.com/DKUlZbF'
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
image = gr.Image(label="Upload Chest X-ray", type="pil")
|
47 |
+
|
48 |
+
sample_images_gallery = gr.Gallery(value = sample_images,label="Sample Images")
|
49 |
|
50 |
with gr.Row():
|
51 |
+
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
52 |
|
53 |
+
generate_button = gr.Button("Generate Caption")
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
|
57 |
caption = gr.Textbox(label="Generated Caption")
|
|
|
58 |
|
59 |
+
def predict(img, model_name):
|
60 |
if model_name == "CLIP-GPT2":
|
61 |
+
return generate_caption_clipgpt(img)
|
62 |
elif model_name == "ViT-GPT2":
|
63 |
+
return generate_caption_vitgpt(img)
|
64 |
elif model_name == "ViT-CoAttention":
|
65 |
return generate_caption_vitCoAtt(img)
|
66 |
else:
|
67 |
+
return "Caption generation for this model is not yet implemented."
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Event handlers
|
71 |
+
generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click
|
72 |
+
sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
demo.launch()
|