Jyothirmai
commited on
Commit
β’
97fceae
1
Parent(s):
96fc972
Update app.py
Browse files
app.py
CHANGED
@@ -24,53 +24,59 @@ def generate_caption_vitCoAtt(image):
|
|
24 |
return caption
|
25 |
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
with gr.Row():
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
"https://imgur.com/W1pIr9b",
|
39 |
-
"https://imgur.com/MLJaWnf",
|
40 |
-
"https://imgur.com/6XymFW1",
|
41 |
-
"https://imgur.com/zdPjZZ1",
|
42 |
-
"https://imgur.com/DKUlZbF"], label="Sample Images", columns = 5)
|
43 |
-
|
44 |
gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>")
|
45 |
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
caption = gr.Textbox(label="Generated Caption")
|
59 |
|
60 |
-
|
61 |
-
if model_name == "CLIP-GPT2":
|
62 |
-
return generate_caption_clipgpt(img, max_tokens, temperature)
|
63 |
-
elif model_name == "ViT-GPT2":
|
64 |
-
return generate_caption_vitgpt(img, max_tokens, temperature)
|
65 |
-
elif model_name == "ViT-CoAttention":
|
66 |
-
return generate_caption_vitCoAtt(img)
|
67 |
-
else:
|
68 |
-
return "Caption generation for this model is not yet implemented."
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
-
demo.launch()
|
|
|
24 |
return caption
|
25 |
|
26 |
|
27 |
+
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
28 |
+
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
29 |
+
|
30 |
+
|
31 |
+
with gr.Row():
|
|
|
|
|
32 |
|
33 |
+
image = gr.Image(label="Upload Chest X-ray", type="pil")
|
34 |
|
35 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>")
|
37 |
|
38 |
|
39 |
+
with gr.Row():
|
40 |
+
|
41 |
+
with gr.Column(): # Column for dropdowns and model choice
|
42 |
+
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
|
43 |
+
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7)
|
44 |
+
|
45 |
+
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
46 |
+
generate_button = gr.Button("Generate Caption")
|
|
|
|
|
47 |
|
|
|
48 |
|
49 |
+
caption = gr.Textbox(label="Generated Caption")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def predict(img, model_name, max_tokens, temperature):
|
52 |
+
if model_name == "CLIP-GPT2":
|
53 |
+
return generate_caption_clipgpt(img, max_tokens, temperature)
|
54 |
+
elif model_name == "ViT-GPT2":
|
55 |
+
return generate_caption_vitgpt(img, max_tokens, temperature)
|
56 |
+
elif model_name == "ViT-CoAttention":
|
57 |
+
return generate_caption_vitCoAtt(img)
|
58 |
+
else:
|
59 |
+
return "Caption generation for this model is not yet implemented."
|
60 |
+
|
61 |
+
|
62 |
+
sample_images = [
|
63 |
+
'https://imgur.com/W1pIr9b',
|
64 |
+
'https://imgur.com/MLJaWnf',
|
65 |
+
'https://imgur.com/6XymFW1',
|
66 |
+
'https://imgur.com/zdPjZZ1',
|
67 |
+
'https://imgur.com/DKUlZbF'
|
68 |
+
]
|
69 |
+
|
70 |
+
# examples = [f"example{i}.jpg" for i in range(1,7)]
|
71 |
+
|
72 |
+
interface = gr.Interface(
|
73 |
+
fn=predict,
|
74 |
+
inputs = [image, model_choice, max_tokens, temperature],
|
75 |
+
theme="gradio/monochrome"",
|
76 |
+
outputs=caption,
|
77 |
+
examples = sample_images,
|
78 |
+
)
|
79 |
+
|
80 |
+
interface.launch(debug=True)
|
81 |
|
82 |
|
|