import gradio as gr from PIL import Image import clipGPT import vitGPT import skimage.io as io import PIL.Image import difflib def compare_and_highlight(text1, text2): print("Triggered function") matcher = difflib.SequenceMatcher(None, text1, text2) output = '' for op, a1, a2, b1, b2 in matcher.get_opcodes(): if op == 'equal': output += f"**{text1[a1:a2]}**" # Highlight matches in bold elif op == 'insert': output += f"{text2[b1:b2]}" elif op == 'delete': output += f"{text1[a1:a2]}" elif op == 'replace': # Handle replacements (more complex) output += f"{text1[a1:a2]} {text2[b1:b2]}" print(output) return output # Caption generation functions def generate_caption_clipgpt(image): caption = clipGPT.generate_caption_clipgpt(image) return caption def generate_caption_vitgpt(image): caption = vitGPT.generate_caption(image) return caption with gr.Blocks() as demo: gr.HTML("

MedViT: A Vision Transformer-Driven Method for Generating Medical Reports 🏥🤖

") gr.HTML("

You can generate captions by uploading an X-Ray and selecting a model of your choice below

") with gr.Row(): sample_images = [ "CXR191_IM-0591-1001.png", "CXR192_IM-0598-1001.png", "CXR193_IM-0601-1001.png", "CXR194_IM-0609-1001.png", "CXR195_IM-0618-1001.png" ] image = gr.Image(label="Upload Chest X-ray") gr.Gallery( value = sample_images, label="Sample Images", ) # sample_images_gallery = gr.Gallery( # value = sample_images, # label="Sample Images", # ) with gr.Row(): model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model") generate_button = gr.Button("Generate Caption") caption = gr.Textbox(label="Generated Caption") def predict(img, model_name): if model_name == "CLIP-GPT2": return generate_caption_clipgpt(img) elif model_name == "ViT-GPT2": return generate_caption_vitgpt(img) else: return "Caption generation for this model is not yet implemented." with gr.Row(): text1 = gr.Textbox(label="Text 1") text2 = gr.Textbox(label="Text 2") compare_button = gr.Button("Compare Texts") with gr.Row(): comparison_result = gr.Textbox(label="Comparison Result") # Event handlers generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click compare_button.click(lambda: compare_and_highlight(text1.value, text2.value), [], comparison_result) # sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images demo.launch()