import gradio as gr from PIL import Image import clipGPT import vitGPT import skimage.io as io import PIL.Image import difflib import ViTCoAtt from build_vocab import Vocabulary # Caption generation functions def generate_caption_clipgpt(image): caption = clipGPT.generate_caption_clipgpt(image) return caption def generate_caption_vitgpt(image): caption = vitGPT.generate_caption(image) return caption def generate_caption_vitCoAtt(image): caption = ViTCoAtt.CaptionSampler.main(image) return caption with gr.Blocks() as demo: gr.HTML("

MedViT: A Vision Transformer-Driven Method for Generating Medical Reports 🏥🤖

") gr.HTML("

You can generate captions by uploading an X-Ray and selecting a model of your choice below

") with gr.Row(): sample_images = [ 'https://imgur.com/W1pIr9b', 'https://imgur.com/MLJaWnf', 'https://imgur.com/6XymFW1', 'https://imgur.com/zdPjZZ1', 'https://imgur.com/DKUlZbF' ] image = gr.Image(label="Upload Chest X-ray", type="pil") sample_images_gallery = gr.Gallery(value = sample_images,label="Sample Images") with gr.Row(): model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model") generate_button = gr.Button("Generate Caption") caption = gr.Textbox(label="Generated Caption") def predict(img, model_name): if model_name == "CLIP-GPT2": return generate_caption_clipgpt(img) elif model_name == "ViT-GPT2": return generate_caption_vitgpt(img) elif model_name == "ViT-CoAttention": return generate_caption_vitCoAtt(img) else: return "Caption generation for this model is not yet implemented." # Event handlers generate_button.click(predict, [image, model_choice], caption) # Trigger prediction on button click sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption) # Handle sample images demo.launch()