Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
bases = { | |
"ToonYou": "frankjoshua/toonyou_beta6", | |
"epiCRealism": "emilianJR/epiCRealism" | |
} | |
step_loaded = None | |
base_loaded = "ToonYou" | |
motion_loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if not torch.cuda.is_available(): | |
raise NotImplementedError("No GPU detected!") | |
device = "cuda" | |
dtype = torch.float16 | |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
# Function | |
def generate_image(prompt, base, motion, step): | |
global step_loaded | |
global base_loaded | |
print(prompt, base, step) | |
if step_loaded != step: | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
step_loaded = step | |
if base_loaded != base: | |
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) | |
base_loaded = base | |
if motion_loaded != motion: | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(hf_hub_download("guoyww/animatediff", motion)) | |
motion_loaded = motion | |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>") | |
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>") | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label='Prompt (English)' | |
) | |
with gr.Row(): | |
select_base = gr.Dropdown( | |
label='Base model', | |
choices=[ | |
"ToonYou", | |
"epiCRealism", | |
], | |
value=base_loaded, | |
interactive=True | |
) | |
select_motion = gr.Dropdown( | |
label='Motion LoRAs', | |
choices=[ | |
("None", None), | |
("Zoom in", "v2_lora_ZoomIn.ckpt"), | |
("Zoom out", "v2_lora_ZoomOut.ckpt"), | |
], | |
value=None, | |
interactive=True | |
) | |
select_step = gr.Dropdown( | |
label='Inference steps', | |
choices=[ | |
('1-Step', 1), | |
('2-Step', 2), | |
('4-Step', 4), | |
('8-Step', 8)], | |
value=4, | |
interactive=True | |
) | |
submit = gr.Button( | |
scale=1, | |
variant='primary' | |
) | |
video = gr.Video( | |
label='AnimateDiff-Lightning', | |
autoplay=True, | |
height=512, | |
width=512, | |
elem_id="video_output" | |
) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, select_base, select_motion, select_step], | |
outputs=video, | |
) | |
demo.queue().launch() |