K00B404 commited on
Commit
20d9d57
1 Parent(s): 1c553d4

Update tuner.py

Browse files
Files changed (1) hide show
  1. tuner.py +56 -0
tuner.py CHANGED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import matplotlib.pyplot as plt
4
+ from transformers import ViTForImageClassification, TrainingArguments, Trainer
5
+ from datasets import load_dataset
6
+
7
+ def finetune_model(epochs, save_at_num_epoch, learning_rate):
8
+ # Load the dataset
9
+ dataset = load_dataset("imagenet")
10
+
11
+ # Initialize the model
12
+ model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
13
+
14
+ # Define the training arguments
15
+ training_args = TrainingArguments(
16
+ output_dir="vit-finetuned",
17
+ num_train_epochs=epochs,
18
+ save_strategy="steps",
19
+ save_steps=save_at_num_epoch,
20
+ learning_rate=learning_rate,
21
+ )
22
+
23
+ # Create the trainer and fine-tune the model
24
+ trainer = Trainer(model=model, args=training_args, train_dataset=dataset["train"])
25
+ train_metrics = trainer.train()
26
+
27
+ # Save the fine-tuned model
28
+ model.save_pretrained("vit-finetuned")
29
+
30
+ # Plot the loss graph
31
+ plt.figure(figsize=(8, 6))
32
+ plt.plot(train_metrics.history["loss"])
33
+ plt.title("Model Loss")
34
+ plt.xlabel("Epoch")
35
+ plt.ylabel("Loss")
36
+ plt.savefig("loss_graph.png")
37
+
38
+ return "Fine-tuning complete!"
39
+
40
+ # Create the Gradio interface
41
+ with gr.Blocks() as demo:
42
+ gr.Markdown("# Fine-Tune a Model")
43
+
44
+ with gr.Column():
45
+ epochs = gr.Slider(label="Epochs", minimum=1, maximum=10, value=3)
46
+ save_at_num_epoch = gr.Slider(label="Save Model Every X Epochs", minimum=1, maximum=epochs, value=1)
47
+ learning_rate = gr.Slider(label="Learning Rate", minimum=1e-5, maximum=1e-3, value=2e-5)
48
+ run_button = gr.Button("Fine-Tune Model")
49
+
50
+ status = gr.Textbox(label="Fine-Tuning Status")
51
+ loss_graph = gr.Image(label="Loss Graph")
52
+
53
+ run_button.click(finetune_model, inputs=[epochs, save_at_num_epoch, learning_rate], outputs=[status, loss_graph])
54
+
55
+ if __name__ == "__main__":
56
+ demo.launch()