Update Adv_app.py
Browse files- Adv_app.py +299 -0
Adv_app.py
CHANGED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
11 |
+
from diffusers.utils import load_dynamic_module
|
12 |
+
|
13 |
+
DESCRIPTION = """
|
14 |
+
# ImagesXL
|
15 |
+
"""
|
16 |
+
|
17 |
+
def save_image(img):
|
18 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
19 |
+
img.save(unique_name)
|
20 |
+
return unique_name
|
21 |
+
|
22 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
23 |
+
if randomize_seed:
|
24 |
+
seed = random.randint(0, MAX_SEED)
|
25 |
+
return seed
|
26 |
+
|
27 |
+
MAX_SEED = np.iinfo(np.int32).max
|
28 |
+
|
29 |
+
if not torch.cuda.is_available():
|
30 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may work on CPU.</p>"
|
31 |
+
|
32 |
+
USE_TORCH_COMPILE = 0
|
33 |
+
ENABLE_CPU_OFFLOAD = 0
|
34 |
+
|
35 |
+
MODEL_CHOICES = {
|
36 |
+
"Fluently-XL-v2": "fluently/Fluently-XL-v2",
|
37 |
+
"Stable Diffusion v1-5": "runwayml/stable-diffusion-v1-5",
|
38 |
+
"Stable Diffusion v2-1": "stabilityai/stable-diffusion-2-1",
|
39 |
+
}
|
40 |
+
|
41 |
+
SCHEDULER_CHOICES = {
|
42 |
+
"Euler Ancestral Discrete": EulerAncestralDiscreteScheduler,
|
43 |
+
"DDIM": DDIMScheduler,
|
44 |
+
"LMS Discrete": LMSDiscreteScheduler,
|
45 |
+
"PNDM": PNDMScheduler,
|
46 |
+
}
|
47 |
+
|
48 |
+
UPSCALER_CHOICES = {
|
49 |
+
"None": None,
|
50 |
+
"Real-ESRGAN": "stabilityai/real-esrgan",
|
51 |
+
"Latent Diffusion": "stabilityai/latent-diffusion-upscaler",
|
52 |
+
}
|
53 |
+
|
54 |
+
def generate(
|
55 |
+
prompt: str,
|
56 |
+
negative_prompt: str = "",
|
57 |
+
use_negative_prompt: bool = False,
|
58 |
+
seed: int = 0,
|
59 |
+
width: int = 512,
|
60 |
+
height: int = 512,
|
61 |
+
guidance_scale: float = 3,
|
62 |
+
num_inference_steps: int = 25,
|
63 |
+
scheduler: str = "Euler Ancestral Discrete",
|
64 |
+
model_name: str = "Fluently-XL-v2",
|
65 |
+
randomize_seed: bool = False,
|
66 |
+
num_images_per_prompt: int = 1,
|
67 |
+
use_lora: bool = False,
|
68 |
+
lora_model_name: str = "",
|
69 |
+
use_upscaler: bool = False,
|
70 |
+
upscaler_model_name: str = "None",
|
71 |
+
progress=gr.Progress(track_tqdm=True),
|
72 |
+
):
|
73 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
74 |
+
|
75 |
+
if not use_negative_prompt:
|
76 |
+
negative_prompt = "" # type: ignore
|
77 |
+
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
80 |
+
MODEL_CHOICES[model_name],
|
81 |
+
torch_dtype=torch.float16,
|
82 |
+
use_safetensors=True,
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
86 |
+
MODEL_CHOICES[model_name],
|
87 |
+
torch_dtype=torch.float32,
|
88 |
+
use_safetensors=True,
|
89 |
+
)
|
90 |
+
|
91 |
+
pipe.scheduler = SCHEDULER_CHOICES[scheduler].from_config(pipe.scheduler.config)
|
92 |
+
|
93 |
+
if use_lora and lora_model_name:
|
94 |
+
pipe = load_dynamic_module("diffusers.loaders", "Lora", "lora")(pipe, lora_model_name, device_map="auto")
|
95 |
+
|
96 |
+
images = pipe(
|
97 |
+
prompt=prompt,
|
98 |
+
negative_prompt=negative_prompt,
|
99 |
+
width=width,
|
100 |
+
height=height,
|
101 |
+
guidance_scale=guidance_scale,
|
102 |
+
num_inference_steps=num_inference_steps,
|
103 |
+
num_images_per_prompt=num_images_per_prompt,
|
104 |
+
output_type="pil",
|
105 |
+
).images
|
106 |
+
|
107 |
+
if use_upscaler and upscaler_model_name:
|
108 |
+
upscaler = StableDiffusionPipeline.from_pretrained(
|
109 |
+
UPSCALER_CHOICES[upscaler_model_name],
|
110 |
+
torch_dtype=torch.float16,
|
111 |
+
use_safetensors=True,
|
112 |
+
)
|
113 |
+
images = [upscaler(image).images[0] for image in images]
|
114 |
+
|
115 |
+
image_paths = [save_image(img) for img in images]
|
116 |
+
print(image_paths)
|
117 |
+
return image_paths, seed
|
118 |
+
|
119 |
+
examples = [
|
120 |
+
"neon holography crystal cat",
|
121 |
+
"a cat eating a piece of cheese",
|
122 |
+
"an astronaut riding a horse in space",
|
123 |
+
"a cartoon of a boy playing with a tiger",
|
124 |
+
"a cute robot artist painting on an easel, concept art",
|
125 |
+
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
|
126 |
+
]
|
127 |
+
|
128 |
+
css = '''
|
129 |
+
.gradio-container{max-width: 800px !important}
|
130 |
+
h1{text-align:center}
|
131 |
+
footer {
|
132 |
+
visibility: hidden
|
133 |
+
}
|
134 |
+
'''
|
135 |
+
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
136 |
+
gr.Markdown(DESCRIPTION)
|
137 |
+
gr.DuplicateButton(
|
138 |
+
value="Duplicate Space for private use",
|
139 |
+
elem_id="duplicate-button",
|
140 |
+
visible=False,
|
141 |
+
)
|
142 |
+
|
143 |
+
with gr.Group():
|
144 |
+
with gr.Row():
|
145 |
+
prompt = gr.Text(
|
146 |
+
label="Prompt",
|
147 |
+
show_label=False,
|
148 |
+
max_lines=2,
|
149 |
+
placeholder="Enter your prompt",
|
150 |
+
container=False,
|
151 |
+
)
|
152 |
+
run_button = gr.Button("Run", scale=0)
|
153 |
+
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
154 |
+
with gr.Accordion("Advanced options", open=False):
|
155 |
+
with gr.Row():
|
156 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
157 |
+
negative_prompt = gr.Text(
|
158 |
+
label="Negative prompt",
|
159 |
+
lines=4,
|
160 |
+
max_lines=6,
|
161 |
+
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
|
162 |
+
placeholder="Enter a negative prompt",
|
163 |
+
visible=True,
|
164 |
+
)
|
165 |
+
with gr.Row():
|
166 |
+
seed = gr.Slider(
|
167 |
+
label="Seed",
|
168 |
+
minimum=0,
|
169 |
+
maximum=MAX_SEED,
|
170 |
+
step=1,
|
171 |
+
value=0,
|
172 |
+
visible=True
|
173 |
+
)
|
174 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
175 |
+
with gr.Row(visible=True):
|
176 |
+
width = gr.Slider(
|
177 |
+
label="Width",
|
178 |
+
minimum=512,
|
179 |
+
maximum=1024,
|
180 |
+
step=8,
|
181 |
+
value=512,
|
182 |
+
)
|
183 |
+
height = gr.Slider(
|
184 |
+
label="Height",
|
185 |
+
minimum=512,
|
186 |
+
maximum=1024,
|
187 |
+
step=8,
|
188 |
+
value=512,
|
189 |
+
)
|
190 |
+
with gr.Row():
|
191 |
+
guidance_scale = gr.Slider(
|
192 |
+
label="Guidance Scale",
|
193 |
+
minimum=0.1,
|
194 |
+
maximum=20.0,
|
195 |
+
step=0.1,
|
196 |
+
value=6,
|
197 |
+
)
|
198 |
+
num_inference_steps = gr.Slider(
|
199 |
+
label="Inference Steps",
|
200 |
+
minimum=1,
|
201 |
+
maximum=100,
|
202 |
+
step=1,
|
203 |
+
value=25,
|
204 |
+
)
|
205 |
+
with gr.Row():
|
206 |
+
scheduler = gr.Dropdown(
|
207 |
+
label="Scheduler",
|
208 |
+
choices=list(SCHEDULER_CHOICES.keys()),
|
209 |
+
value="Euler Ancestral Discrete",
|
210 |
+
)
|
211 |
+
model_name = gr.Dropdown(
|
212 |
+
label="Model",
|
213 |
+
choices=list(MODEL_CHOICES.keys()),
|
214 |
+
value="Fluently-XL-v2",
|
215 |
+
)
|
216 |
+
with gr.Row():
|
217 |
+
num_images_per_prompt = gr.Slider(
|
218 |
+
label="Images per Prompt",
|
219 |
+
minimum=1,
|
220 |
+
maximum=8,
|
221 |
+
step=1,
|
222 |
+
value=1,
|
223 |
+
)
|
224 |
+
with gr.Row():
|
225 |
+
use_lora = gr.Checkbox(label="Use LoRA Model", value=False)
|
226 |
+
lora_model_name = gr.Text(
|
227 |
+
label="LoRA Model Name",
|
228 |
+
placeholder="Enter a LoRA model name (e.g., 'runwayml/stable-diffusion-v1-5-lora')",
|
229 |
+
visible=False,
|
230 |
+
)
|
231 |
+
with gr.Row():
|
232 |
+
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
233 |
+
upscaler_model_name = gr.Dropdown(
|
234 |
+
label="Upscaler Model",
|
235 |
+
choices=list(UPSCALER_CHOICES.keys()),
|
236 |
+
value="None",
|
237 |
+
visible=False,
|
238 |
+
)
|
239 |
+
|
240 |
+
gr.Examples(
|
241 |
+
examples=examples,
|
242 |
+
inputs=prompt,
|
243 |
+
outputs=[result, seed],
|
244 |
+
fn=generate,
|
245 |
+
cache_examples=False,
|
246 |
+
)
|
247 |
+
|
248 |
+
use_negative_prompt.change(
|
249 |
+
fn=lambda x: gr.update(visible=x),
|
250 |
+
inputs=use_negative_prompt,
|
251 |
+
outputs=negative_prompt,
|
252 |
+
api_name=False,
|
253 |
+
)
|
254 |
+
|
255 |
+
use_lora.change(
|
256 |
+
fn=lambda x: gr.update(visible=x),
|
257 |
+
inputs=use_lora,
|
258 |
+
outputs=lora_model_name,
|
259 |
+
api_name=False,
|
260 |
+
)
|
261 |
+
|
262 |
+
use_upscaler.change(
|
263 |
+
fn=lambda x: gr.update(visible=x),
|
264 |
+
inputs=use_upscaler,
|
265 |
+
outputs=upscaler_model_name,
|
266 |
+
api_name=False,
|
267 |
+
)
|
268 |
+
|
269 |
+
gr.on(
|
270 |
+
triggers=[
|
271 |
+
prompt.submit,
|
272 |
+
negative_prompt.submit,
|
273 |
+
run_button.click,
|
274 |
+
],
|
275 |
+
fn=generate,
|
276 |
+
inputs=[
|
277 |
+
prompt,
|
278 |
+
negative_prompt,
|
279 |
+
use_negative_prompt,
|
280 |
+
seed,
|
281 |
+
width,
|
282 |
+
height,
|
283 |
+
guidance_scale,
|
284 |
+
num_inference_steps,
|
285 |
+
scheduler,
|
286 |
+
model_name,
|
287 |
+
randomize_seed,
|
288 |
+
num_images_per_prompt,
|
289 |
+
use_lora,
|
290 |
+
lora_model_name,
|
291 |
+
use_upscaler,
|
292 |
+
upscaler_model_name,
|
293 |
+
],
|
294 |
+
outputs=[result, seed],
|
295 |
+
api_name="run",
|
296 |
+
)
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
demo.queue(max_size=20).launch(show_api=False, debug=False)
|