File size: 9,831 Bytes
19fe404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import csv
import gc
import io
import json
import math
import os
import random
from contextlib import contextmanager
from threading import Thread

import albumentations
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from decord import VideoReader
from einops import rearrange
from func_timeout import FunctionTimedOut, func_timeout
from PIL import Image
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset

VIDEO_READER_TIMEOUT = 20

def get_random_mask(shape):
    f, c, h, w = shape
    
    mask_index = np.random.randint(0, 4)
    mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
    if mask_index == 0:
        mask[1:, :, :, :] = 1
    elif mask_index == 1:
        mask_frame_index = 1
        mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
    elif mask_index == 2:
        center_x = torch.randint(0, w, (1,)).item()
        center_y = torch.randint(0, h, (1,)).item()
        block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
        block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

        start_x = max(center_x - block_size_x // 2, 0)
        end_x = min(center_x + block_size_x // 2, w)
        start_y = max(center_y - block_size_y // 2, 0)
        end_y = min(center_y + block_size_y // 2, h)
        mask[:, :, start_y:end_y, start_x:end_x] = 1
    elif mask_index == 3:
        center_x = torch.randint(0, w, (1,)).item()
        center_y = torch.randint(0, h, (1,)).item()
        block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
        block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

        start_x = max(center_x - block_size_x // 2, 0)
        end_x = min(center_x + block_size_x // 2, w)
        start_y = max(center_y - block_size_y // 2, 0)
        end_y = min(center_y + block_size_y // 2, h)

        mask_frame_before = np.random.randint(0, f // 2)
        mask_frame_after = np.random.randint(f // 2, f)
        mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
    else:
        raise ValueError(f"The mask_index {mask_index} is not define")
    return mask


@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
    vr = VideoReader(*args, **kwargs)
    try:
        yield vr
    finally:
        del vr
        gc.collect()


def get_video_reader_batch(video_reader, batch_index):
    frames = video_reader.get_batch(batch_index).asnumpy()
    return frames


class WebVid10M(Dataset):
    def __init__(
            self,
            csv_path, video_folder,
            sample_size=256, sample_stride=4, sample_n_frames=16,
            enable_bucket=False, enable_inpaint=False, is_image=False,
        ):
        print(f"loading annotations from {csv_path} ...")
        with open(csv_path, 'r') as csvfile:
            self.dataset = list(csv.DictReader(csvfile))
        self.length = len(self.dataset)
        print(f"data scale: {self.length}")

        self.video_folder    = video_folder
        self.sample_stride   = sample_stride
        self.sample_n_frames = sample_n_frames
        self.enable_bucket   = enable_bucket
        self.enable_inpaint  = enable_inpaint
        self.is_image        = is_image
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose([
            transforms.Resize(sample_size[0]),
            transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
        
        video_dir    = os.path.join(self.video_folder, f"{videoid}.mp4")
        video_reader = VideoReader(video_dir)
        video_length = len(video_reader)
        
        if not self.is_image:
            clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
            start_idx   = random.randint(0, video_length - clip_length)
            batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
        else:
            batch_index = [random.randint(0, video_length - 1)]

        if not self.enable_bucket:
            pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
            pixel_values = pixel_values / 255.
            del video_reader
        else:
            pixel_values = video_reader.get_batch(batch_index).asnumpy()

        if self.is_image:
            pixel_values = pixel_values[0]
        return pixel_values, name

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                pixel_values, name = self.get_batch(idx)
                break

            except Exception as e:
                print("Error info:", e)
                idx = random.randint(0, self.length-1)

        if not self.enable_bucket:
            pixel_values = self.pixel_transforms(pixel_values)
        if self.enable_inpaint:
            mask = get_random_mask(pixel_values.size())
            mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
            sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name)
        else:
            sample = dict(pixel_values=pixel_values, text=name)
        return sample


class VideoDataset(Dataset):
    def __init__(
        self,
        json_path, video_folder=None,
        sample_size=256, sample_stride=4, sample_n_frames=16,
        enable_bucket=False, enable_inpaint=False
    ):
        print(f"loading annotations from {json_path} ...")
        self.dataset = json.load(open(json_path, 'r'))
        self.length = len(self.dataset)
        print(f"data scale: {self.length}")

        self.video_folder    = video_folder
        self.sample_stride   = sample_stride
        self.sample_n_frames = sample_n_frames
        self.enable_bucket   = enable_bucket
        self.enable_inpaint  = enable_inpaint
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose(
            [
                transforms.Resize(sample_size[0]),
                transforms.CenterCrop(sample_size),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        video_id, name = video_dict['file_path'], video_dict['text']

        if self.video_folder is None:
            video_dir = video_id
        else:
            video_dir = os.path.join(self.video_folder, video_id)

        with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
            video_length = len(video_reader)
        
            clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
            start_idx   = random.randint(0, video_length - clip_length)
            batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)

            try:
                sample_args = (video_reader, batch_index)
                pixel_values = func_timeout(
                    VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
                )
            except FunctionTimedOut:
                raise ValueError(f"Read {idx} timeout.")
            except Exception as e:
                raise ValueError(f"Failed to extract frames from video. Error is {e}.")

            if not self.enable_bucket:
                pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
                pixel_values = pixel_values / 255.
                del video_reader
            else:
                pixel_values = pixel_values

            return pixel_values, name

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                pixel_values, name = self.get_batch(idx)
                break

            except Exception as e:
                print("Error info:", e)
                idx = random.randint(0, self.length-1)

        if not self.enable_bucket:
            pixel_values = self.pixel_transforms(pixel_values)
        if self.enable_inpaint:
            mask = get_random_mask(pixel_values.size())
            mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
            sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name)
        else:
            sample = dict(pixel_values=pixel_values, text=name)
        return sample


if __name__ == "__main__":
    if 1:
        dataset = VideoDataset(
            json_path="/home/zhoumo.xjq/disk3/datasets/webvidval/results_2M_val.json",
            sample_size=256,
            sample_stride=4, sample_n_frames=16,
        )

    if 0:
        dataset = WebVid10M(
            csv_path="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv",
            video_folder="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val",
            sample_size=256,
            sample_stride=4, sample_n_frames=16,
            is_image=False,
        )

    dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=0,)
    for idx, batch in enumerate(dataloader):
        print(batch["pixel_values"].shape, len(batch["text"]))